• Title/Summary/Keyword: 디지털분류

Search Result 1,294, Processing Time 0.03 seconds

Vision-Based Train Position and Movement Estimation Using a Fuzzy Classifier (퍼지 분류기를 이용한 비전 기반 열차 위치 및 움직임 추정)

  • Song, Jae-Won;An, Tae-Ki;Lee, Dae-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.365-369
    • /
    • 2012
  • We propose a vision-based method that estimates train position and movement for railway monitoring in which we use a fuzzy classifier to determine train states. The proposed method employs frame difference and background subtraction for estimating train motion and presence, respectively. These features are used as the linguistic variables of the fuzzy classifier. Experimental results show that the proposed method can correctly estimate train position and movement. Therefore the method can be used for railway monitoring systems which estimate crowd density or protect safety.

An Efficient Peak Detection Algorithm in Magnitude Spectrum for M-FSK Signal Classification (M-FSK 변조 신호 분류를 위한 효율적인 진폭 스펙트럼의 첨두 검출 방법)

  • Ahn, Woo-Hyun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.967-970
    • /
    • 2014
  • An efficient peak detection algorithm in magnitude spectrum is proposed to distinguish the M-frequency shift keying(FSK) signals from other digitally modulated signal. In addition, recognition of the modulation order estimation of FSK signals is also studied based on the fact that the magnitude spectrum of FSK signals reveals the number of peaks equal to the modulation order. When no a priori information about the signals, we utilize the histogram of the magnitude spectrum to determine the threshold which is important factor in peak detection algorithm. The simulation results show high probability of classification under 500 symbols and signal-to-noise ratio(SNR) higher than 4dB.

A Study on the digital architectural design technical type by non-linear space design (비선형 공간구성의 특징에 기초한 디지털 건축디자인의 기술적 유형 연구)

  • 김석태
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • The visual, sensible and social situation that the modern digital technologies create became the background for the works of architects in extreme modernism and their space modeling suggested another possibility that was emancipated from the restriction of a property of matter and gravity in the existing space. The architecture design process using the digital technology has been attempted in diverse ways and summarized with several characteristics such as displacement, nonlinear space, flexibility of space and non-Euclidean geometry system. However, the conceptual and very technical design process that is called as digital architecture has been indiscriminately used with mixed meanings and the common features and differences between works and theories are not studied. This study aims to classify and identify the digital architecture by type as analyzing the non-linear composition process that is common in the digital architecture.

  • PDF

A Study on the Development of Conceptualization Model for Reading, Information, ICT, and Digital Literacy (독서·정보·ICT·디지털 리터러시의 개념화 모델 개발 연구)

  • Park, Juhyeon
    • Journal of Korean Library and Information Science Society
    • /
    • v.49 no.2
    • /
    • pp.267-300
    • /
    • 2018
  • The purpose of this study is to develop conceptualization models of reading, information, ICT, and digital literacy through conceptual differences of these literacy by reviewing and defining the concepts of literacy as well as reading, information, ICT, and digital literacy. Computer literacy has emerged as a concept that explains the phenomenon of contemporary social, cultural, and information technology development, and since then, computer literacy has since changed to IT, ICT literacy, and digital literacy. As a result of the study, a conceptualization model of the reading, information, ICT, and digital literacy was developed. In this model, these literacy whose terms have changed according to the technological development of media, have been classified as medium-centered literacy. And reading and information literacy that focuses on the cognitive process of understanding, utilizing, and evaluating texts and information is categorized as process-oriented literacy. In the digital environment, reading and information literacy is a core competence to critically think and evaluate the texts that are on media, and further research is needed to reduce the reading and the information gap among readers.

ATSC-VSB복조 IC의 기술 개발 동향

  • 오지성;김기범;송동일
    • Broadcasting and Media Magazine
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1999
  • ATSC-VSB 규격은 미국형 지상파 디지털 방송의 전송부 변복조 기법으로 채택된 것으로 현재 선진 가전 업체들을 중심으로 상용 DTV를 위한 VSB 복조 IC가 개발 발표되고 있다. VSB 복조 IC는 동기부에 적용하는 기술에 따라 아날로그 혹은 디지털 방식의 다양한 구조를 가지게 된다. 본 고에서는 디지털 방식의 VSB 복조IC를 구성하는 기본적인 기능 블럭의 구성에 대해 살펴보고, 현재 세계 각국의 업체들에서 개발한 IC들을 개발 방식에 따라 분류하고 그 특성을 비교하였다.

  • PDF

Design Evaluation of Mobile Devices Using Virtual Reality Based Prototypes (가상현실 기반 프로토타입을 이용한 모바일 장치의 디자인 평가)

  • Jo, Dong-Sik;Yang, Ung-Yeon;Son, Wook-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.683-684
    • /
    • 2007
  • 본 연구는 가상현실 기반 프로토타입을 이용한 모바일 장치의 디자인 평가 방법에 관한 것으로, 모바일 장치의 디자인 요소 분류, 3 차원 데이터의 고품질 가시화 기법, 제품 기능과 동작에 대한 사용자 상호작용의 구현 방법을 제시하고자 한다.

The Malware Detection Using Deep Learning based R-CNN (딥러닝 기반의 R-CNN을 이용한 악성코드 탐지 기법)

  • Cho, Young-Bok
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1177-1183
    • /
    • 2018
  • Recent developments in machine learning have attracted a lot of attention for techniques such as machine learning and deep learning that implement artificial intelligence. In this paper, binary malicious code using deep learning based R-CNN is imaged and the feature is extracted from the image to classify the family. In this paper, two steps are used in deep learning to image malicious code using CNN. And classify the characteristics of the family of malicious codes using R-CNN. Generate malicious code as an image, extract features, classify the family, and automatically classify the evolution of malicious code. The detection rate of the proposed method is 93.4% and the accuracy is 98.6%. In addition, the CNN processing speed for image processing of malicious code is 23.3 ms, and the R-CNN processing speed is 4ms to classify one sample.

Research on Software Classification System based on an Integrated Software Industry (융합소프트웨어산업에 따른 소프트웨어 분류체계에 관한 연구)

  • Yang, Hyo-Sik;Jeon, In-Oh
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.91-99
    • /
    • 2013
  • While there is the active integration of various industries, a convergence of the software and knowledge service industries including software used in finance and counseling products is creating the necessity to include software industry utilization sectors aside from covering only software products and service production activities. Furthermore, to cope with the radical environment changes in the software industry when it comes to categorizing mobile and cloud computing areas into a software and classification system, we are at a point where there is a need to establish a directional nature on what should be included. In order to establish an integrated classification of newly introduced technologies, products and services, this paper aims to discover areas not included in the classification standard because of the ecological characteristics of the software. It also wants to differentiate the classification system and identify its incomplete areas such as the lack of connections within the system to ultimately establish such for newly surfacing software fields.

Object-oriented image segmentation and classification for precise digital forest type map (정밀 디지털 임상도 제작을 위한 객체지향 영상분할 및 분류)

  • Kim, So-Ra
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.224-230
    • /
    • 2008
  • 본 연구는 산림 내 임상을 구획하기 위해 고해상도 IKONOS 위성영상을 객체 지향기반으로 분할 및 분류하였다. 영상분할 시 분광정보와 공간정보를 동시에 이용하여 모양이나 분광정보에 있어서 동질한 영역이라고 정의되는 영상객체를 생성하였다. 분할된 영상을 분류계급(class)으로 분류하기 위하여 NDVI와 경사, 방위, 고도 등 지형인자를 새로운 레이어로 추가시키고, 분류개념을 형성하기 위하여 퍼지 규칙을 사용하였다. 영상의 획득시기가 5월초인 점을 감안하여 NDVI는 0.2, 경사 $^{\circ}5^{\circ}$ 그리고 고도 130m를 기준으로 산림과 비산림지역을 분류할 수 있었고, 지형인자에 영향을 많이 받는 굴참나무와 신갈나무 또한 효율적으로 분류할 수 있었다.

  • PDF

Gray-Level Co-Occurrence Matrix(GLCM) based vehicle type classification method (GLCM 특징정보 기반의 자동차 종류별 분류 방안)

  • Yoon, Jong-Il;Kim, Jong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.410-413
    • /
    • 2011
  • 본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.