• Title/Summary/Keyword: 디젤 입자상 물질

Search Result 163, Processing Time 0.027 seconds

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine (Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구)

  • Gong, Ho-Jeong;Hwang, In-Goo;Ko, A-Hyun;Myung, Cha-Lee;Park, Sim-Soo;Lim, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure (스크린 필터 구조 Partial Metal DPF의 PM 저감 특성)

  • Kim, Chunghui;Kim, Hyunchul;Lee, Geesoo;Choi, Jeonghwang;Chon, Munsoo;Shin, Suk Shin;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2013
  • In this work, the 1L grade integrated metal DOC/DPF filter that can install in engine manifold position was developed to investigate the effect of platinum-coating amount of filter on the improvement of filter activation temperature and reduction of particulate matter (PM). This filter was installed in 2.9L CI engine which meets the EURO-4 emission regulation. Tests for PM reduction efficiency of filter were conducted under ND-13 mode with full-load test condition. It was revealed that the time to reach the activation temperature of metal filter ($280^{\circ}C$) was shorter as the amount of platinum-coating increased. This short activation time can be helpful for the reduction of CO and HC emissions during cold start condition. At the same time, PM reduced as the coating amount increased. The reduction percentage of $DOC_{40}$, $DOC_{20}$, and $DOC_0$ were 96.7% (2.34 mg/kW'h), 95.1% (3.47 mg/kW'h), and 94.5% (3.69 mg/kW'h) compared to previous result (71.4 mg/kW'h), respectively.

An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System (배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Lee, Jung-Sub;Yoon, Yu-Bin;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.