• Title/Summary/Keyword: 디젤 연소

Search Result 500, Processing Time 0.028 seconds

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system (에멀젼연료와 EGR의 동시적용 디젤엔진에 있어서 연료 분사 패턴이 연소와 배기가스에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • The use of emulsified fuel and EGR (Exhaust gas recirculation) system are effective methods to reduce NOx emission from diesel engines. In general, it is considered that EGR method influences diesel engine combustion in three different ways: thermal, chemical and dilution effect. Among others, the thermal effect is related to the increase of specific heat capacity due to the presence of $CO_2$ and $H_2O$ in inlet air. Meanwhile, emulsified fuel method of utilizing latent heat of vaporization and miro-explosion has been recognized as an effective technique for reducing diesel engine emissions. In this paper, an author studied on combustion and emission characteristics by using emulsified fuel (EF, Light oil : 80% + Water : 20%) and EGR (30% EGR ratio) system. And the effect of fuel injection pattern control was investigated.

A Study on the Effects of Heating of Fuel Oil on Combustion Characteristics and Engine Performance (연료유 가열이 디젤기관의 연소특성 및 기관성능에 미치는 영향에 관한 연구)

  • 고대권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.82-86
    • /
    • 1989
  • This paper is concerned with the effects of temperature of diesel fuel on combustion characteristics and engine performance in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The fuel injection timing was delayed with increase in temperature for diesel fuel, and remarkably delayed at low load. 2. The point of maximum pressure was delayed with increase in temperature for diesel fuel, the maximum pressure decreased with increase in temperature for diesel fuel but increased with increase in load. 3. The brake specific fuel comsumption (BSFC) decreased with increase in load, the optimum temperature of the heated fuel was about 15$0^{\circ}C$. 4. The smoke emissions increased with increase in load and temperature for diesel fuel.

  • PDF

Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine (저온연소엔진 실용화를 위한 연소전략에 대한 연구)

  • Shim, Euijoon;Han, Youngdeok;Shin, Seunghyup;Kim, Duksang;Kwon, Sangil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.

Effects of Aspect Ratio on Combustion Characteristics in Diesel Engine (연소실 형상비가 디젤기관의 연소특성에 미치는 영향)

  • Kwon, S.I.;Kwon, J.B.;Kim, H.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.23-32
    • /
    • 1998
  • The effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the aspect ratio (Bowl Diameter / Bowl Depth) of bowl of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber were meadured. Also, the combustion characteristics compared of the experimented and the calculated values which is used by the Hiroyasu's combustion model. The results are as follows; The effect of $d_c/H$ on ignition delay period are small. The smoke is corerelated to the heat release of the premixed and the diffusion combustion, i.g, the smoke decreased by decreasing the premixed combustion or increasing the diffusion combustion on cumulative heat release. The premixed combustion process has more effect than the diffusion combustion on smoke. The formal tendency of $d_c/H$ on engine performance has not appear.

  • PDF

Development of 0D Multizone Combustion Model and Its Coupling with 1D Cycle-Simulation Model for Medium-Sized Direct-Injection Diesel Engine (중형 직분식 디젤 엔진의 0-D Multi-zone 연소 모델 및 1-D Cycle Simulation 연계 기법 개발)

  • Choi, Seung-Mok;Min, Kyoung-Doug;Kim, Ki-Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • In this study, a 0D multizone spray-combustion model is developed for the estimation of the performance and NOx emission of medium-sized direct-injection marine diesel engine. The developed combustion model is coupled with the commercial 1D cycle-simulation model, Boost, to analyze the entire engine system, including the intake and exhaust. The combustion model code was generated using Fortran90, and the model was coupled with Boost by connecting the generated code to a user-defined high-pressure cycle (UDHPC) interface. Simulation was performed for two injectors (8 holes and 10 holes) and two engine loads (50% and 100%), and the results of simulation were in good agreement with engine performance test.

Investigation on emission characteristics of nitrous oxide from marine diesel engine (선박용 디젤엔진에서 아산화질소의 배출특성에 대한 연구)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1051-1056
    • /
    • 2014
  • Nitrous oxide ($N_2O$) is naturally generated from biological activity, such as bacteria's material exchange. However, recent $N_2O$ concentration in the atmosphere has being increased by the human activities such as industrial growth. One of factors to increase $N_2O$ concentration in the atmosphere is a $N_2O$ emission caused by the combustion of marine fuel oils. The marine transportation presently handles over 99 percent of the international freight cargoes and the number of ship is continuously increasing with increment of cargoes. In this study, author conducted a series of the experimental investigations on which combustion of fuels containing different element concentrations used in a 4-stroke marine diesel engine affect $N_2O$ emissions in the exhaust gas. Moreover, it is assessed on the extent to which fuel combustion patterns in the combustion chamber affect $N_2O$ emissions.

A Study on Optimization of Diesel Combustion in condition of Premixed Natural gas (천연가스 예혼합 분위기 내 디젤 연소의 최적화에 관한 연구)

  • Suh, Hyunuk;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • This numerical study was carried out to optimize dual fuel combustion on natural gas-diesel in static chamber. Spray experiments conducted under conditions of premixed methan 0%, 5% and 10%. In the results, penetration decreases when premixed methane is increasing. Constants of numerical models were acquired from results of spray experiments to enhance accuracy of numerical study. And dual fuel engine simulation was implemented by using AVL-FIRE with acquired constants.

  • PDF