• 제목/요약/키워드: 디젤 연소

검색결과 501건 처리시간 0.022초

디젤연소에 미치는 노즐 형상 및 분사시기의 효과에 관한 연구 (A Study on Effects of the Nozzle Shape and Injection Timing in a Diesel Combustion)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.32-37
    • /
    • 2001
  • The characteristics of engine performance with fuel injection system in D.I. diesel engine were studied in this paper. A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe and injection timing in the fuel injection system. The authors have obtained the results that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

  • PDF

와류실식 소형 디젤기관의 연소실 형상이 기관 성능에 미치는 영향(II) (The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine(II))

  • 라진홍
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.47-55
    • /
    • 1999
  • A study on swirl chamber for diesel engine is to realize lower fuel consumption and exhaust emission than the current marketing engines. Author formerly reported the performance characteristics of small IDI diesel engine with swirl chamber by changing the jet passage area and its angle, and the depth and shape of the piston top cavity. Following after the first report, in this paper, the characteristics of fuel consumption, soot emission, and exhaust gas temperature were examined and analyzed after dimension of jet passage area expanded to $70.1mm^2$ The results were that the optimum values of the jet passage area depending on the depth of the piston top cavity were different at each engine speeds and loads, and in accordance with application of engine running conditions they were able to be selected as optimum dimensions of each design parameters.

  • PDF

선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구 (A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

벽면에 충돌하는 디젤분무의 거동 (Behavior of a Diesel Spray Impinged on a Wall)

  • 조일영;오재건
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.1-6
    • /
    • 1997
  • In the case of analyzing the combustion phenomena in a small high speed DI diesel engine, one demands the experimental results of the impinging spray on the wall as a basic characteristics. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air at room temperature was charged. The single spray was impinged on a flat wall. The growth of the spray was photographed with transmitted light or scattered light. The effect of the spray axis angle to the wall on the impinging spray was revealed. Finally, the experimental results was presented, that is, the radius and height of the impinging spray was influenced by above mentioned variable.

  • PDF

선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구 (An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine)

  • 조상곤
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.

커먼레일 디젤기관용 피에조 인젝터 그룹홀 노즐의 분무 특성에 관한 실험적 연구 (Experimental Study on Spray Characteristics of Piezo Injector Group-hole Nozzle for Common Rail Diesel Engine)

  • 성기안
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.14-19
    • /
    • 2008
  • In order to meet stringent future emission regulations, especially to reduce Particulate Matter (PM) and NOX, stoichiometric diesel combustion technology with a piezo group-hole nozzle injector is being researched for reduction harmful emissions. A new nozzle layout, namely a group-hole nozzle, which has one group of small orifices with a wide spray included angle was investigated to improve the efficiency of stoichiometric diesel combustion. From this point of view, the group-hole nozzle suggested by Dense Co. is an attractive candidate method applicable to stoichiometric diesel combustion. The group-hole nozzle concept is to reduce the injector nozzle hole diameters without sacrificing spray penetration by closely locating two holes. Experimental studies have proven that the spray from group-hole nozzles have similar spray penetration to that of a single hole with equivalent overall nozzle hole area, but the spray drop sizes (SMD) are reduced, aiding vaporization and mixing.

  • PDF

원전 비상디젤발전기 엔진 상태진단용 초음파 및 진동센서 설치방법에 관한 연구

  • 이상국;최광희;최유성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.231-231
    • /
    • 2012
  • 엔진의 상태진단을 위하여 사용되는 진동 및 초음파 신호는 진동 가속도계와 초음파변환기를 대상 엔진의 취약 부위에 부착하여 측정한다. 이들 센서는 연소와 관련된 고주파진동을 측정하는 능력이 있어서 사용되고 있다. 진동가속도계와 초음파변환기의 선정 및 설치는 진동해석에서 가장 중요한 결정 요소이다. 가속도계의 설치도 주파수응답에 영향을 준다. 초음파변환기는 전자기계적 변환기로서, 진동면에서 발생하여 공기 중으로 전파되는 음파를 감지한다. 초음파변환기는 사용할 수 있는 주파수대역이 아주 협소한 대신 가속도계보다 명확한 신호를 산출한다. 초음파변환기는 사용할 수 있는 아주 협소한 주파수역을 갖는 비용으로 가속도계보다 명확한 신호를 얻을 수 있다. 따라서 본 논문에서는 원전 비상디젤발전기 엔진 상태진단을 위한 초음파 및 진동센서의 설치방법에 따른 가속도계 및 초음파 센서의 응답 특성을 분석하고 주파수응답에 대한 영향에 따라 여러 가지 설치방법의 검토를 통하여 최적방법론을 도출한 결과를 소개하고자 한다.

  • PDF

흡기조성 변화에 따른 디젤 기관의 연소 특성 변화 (A Study on the Combustion Characteristics of Diesel Engine by the Change of the Intake Air Composition)

  • 김세원;임재문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.91-96
    • /
    • 1994
  • Intake gases other than air, which is composed of oxygen, nitrogen, carbon dioxide, and argon, are used to study their effects on the performance of the diesel engine experimentally. The engine is operated at constant speed and fixed fuel injection timing, and cylinder pressure and heat release rate are measured at various intake gas compositions. The results show that increase of oxygen concentration improves the performance of the engine generally. The adverse effect is observed when the oxygen concentration is increased over the critical oxygen concentration of this test, mainly because of the over-shortened ignition delay. Increase of carbon dioxide concentration degardes the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improves the overall performance. Finally, it is found that two most influencing factors affecting the performance of the diesel engine in this study are ignition delay and speific heat ratio of the intake gas.

  • PDF

커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션 (CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

디젤기관의 대체연료로서 DEE의 연소 특성에 관한 연구 (A Study on the Combustion Characteristics of DEE as an Alternative Fuel in Diesel Engine)

  • 유경현;최준혁;오영택
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.47-56
    • /
    • 2001
  • Nitrogen oxides(NOx) and smoke emissions of diesel engine are regarded as a source of air pollution, and there is a global trend to enforce more stringent regulations on these exhaust gas emissions. However, the trade-off relation of NOx and smoke is a main obstacle to reduce both of them simultaneously. In this paper, experiments were conducted with an oxygenated fuel(diethyl ether) as an effective way to improve the trade-off relation of NOx and smoke. Exhaust emissions of diesel fuels with DEE were influenced by the additive content of DEE and the injection timing. Especially, DEE effected more at the high engine speed and load than at the low engine speed and load. Diesel fuel blended with DEE 10% was a desirable blend for the simultaneous reduction of NOx and smoke.

  • PDF