• Title/Summary/Keyword: 디젤연료

Search Result 836, Processing Time 0.027 seconds

바이오디젤의 상용화 현황 및 전망

  • 이진석
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.10
    • /
    • pp.45-49
    • /
    • 2004
  • 디젤 차량의 연료인 경유를 대체하기 위하여 개발된 청정 재생 연료로 EU 및 미국 등 선진구에서 보급이 급속하게 이루어지고 있는 바이오디젤의 활용 현황에 대해 소개하고자 한다.

  • PDF

Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels (과급에 의한 디젤 및 바이오디젤의 저온연소 운전영역 확장에 관한 연구)

  • Jang, Jae-Hoon;Oh, Seung-Mook;Lee, Yong-Gyu;Lee, Sun-Youp
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1065-1072
    • /
    • 2012
  • Due to its oxygen (O) content, biodiesel (BD) is advantageous in that it lowers PM emissions in CI engines. Therefore, BD is considered one of the best candidates for low temperature combustion (LTC) operation because its use can extend the regime for simultaneous reduction of PM and $NO_x$. Thus, in this study, LTC operation was realized using BD and diesel with a 5~7% $O_2$ fraction. Engine test results show that the use of BD increased the efficiency and reduced emissions such as PM, THC, and CO; furthermore, IMEP reduced by 10~12% owing to the lower LHV of the fuel. In particular, smoke was suppressed by up to 90% because O atoms in the BD enhanced the soot oxidation reaction. To compensate the IMEP loss, turbocharging (TC) was then tested, and the results showed that the power output increased and PM was reduced further. Moreover, TC in BD engine operation allowed a similar level of reduction in both $NO_x$ and PM at 11~12% $O_2$ fraction, suggesting that there is a potential to widen the operating range by the combination of TC and BD.

Risk Evaluation of Biodiesel (바이오디젤연료 위험성평가)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.79-82
    • /
    • 2008
  • Biodiesel is manufactured from vegetable oils, etc. in reaction with methanol so that the product of biodiesel may be dangerous due to the methanol remained of it. The risks of methanol remained in biodiesel were studied by measuring flash points and dynamic viscosity to some samples of biodiesel by adding methanol to a certain percentage of. The results of flash points of biodiesel are decreased in accordance with increasing of methanol in biodiesel and also decreasing the dynamic viscosity. It was shown that the risks of explosion of biodiesel are significantly high due to lower flash points resulted from methanol remained in biodiesel fuel as a reactant or adding to biodiesel for reduction of viscosity.

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics of Biodiesel Blend Oil in Diesel Engine (디젤기관에서 바이오디젤 혼합유의 배기배출물 특성에 미치는 연료분사시기의 영향)

  • Lim, Jae-Keun;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.603-608
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on shore and sea. However, the combustion characteristics and exhaust emissions of the engine are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore the combustion characteristics and exhaust emissions on the fuel injection timing were experimentally investigated to find out the optimum fuel injection timing in case of the about 20 years used diesel engine using biodiesel blend oil. The original fuel injection timing of the engine is BTDC $22^{\circ}$ CA. However, it is found that the optimum fuel injection as a result of analyzing the specific oil consumption and exhaust emissions of 20 years used the engine is BTDC $26^{\circ}$ CA.

Basic Study of Evaporative Characteristics of Emulsified Fuels (에멀젼연료 증발특성에 관한 기초 연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.917-922
    • /
    • 2015
  • The goal of this study is to consider the application of alternative blended fuel to diesel engine. In this study, as the test fuels, we use a blended fuel mix of diesel and hydrogen peroxide. As the primary variable, we vary the mixing ratio of diesel and hydrogen peroxide in the experimental and numerical analysis. We perform an evaporative behavior characteristics analysis of the emulsified fuel using the Schlieren method. The numerical analysis was carried out based on results obtained from the experimental analysis using the commercial code(ANSYS CFX). Consequently, we found that the micro-explosion depends on the fraction of hydrogen peroxide, and we propose a numerical method for the quantitative evaporation analysis of emulsified fuel droplets using the calculation of the volume fraction in the oil domain.

The Effect of Bio-diesel Fuel on Industrial Diesel Engine (바이오디젤 연료가 산업용 디젤 엔진 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Ko, Jea-Hyun;Park, Hong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • An alternative fuel is introduced as an environmentally friendly fuel in order to reduce the toxic emissions from conventional fossil fuels. In this study a bio-diesel fuel is produced and applied into the industrial diesel engine to understand the effect on the performance. The test conditions are loads of idle to maximum torque and engine speeds of 700 to 1900 rpm in bio-diesel blending percents of 0, 10, 20%. The results show that smoke and CO emissions are reduced while NOx in slightly increased, and the effects are rather clear in higher loads.

대형 디젤대체용 LPG 엔진개발

  • Gang, Geon-Yong
    • LP가스
    • /
    • s.71
    • /
    • pp.49-53
    • /
    • 2000
  • 대형디젤엔진의 대체용으로 LPG 엔진을 개발함에 있어서 차세대 연료공급방식인 LPG 연료의 액상분사방식을 채택하여 기존의 믹서방식의 연료공급시스템을 가진 LPG 엔진보다 고출력, 고효율, 저공해성을 추구하고자 하였다. 이를 위한 기초연구로서 먼저 단기통 연소엔진을 이용하여 대형엔진에 LPG 연료 적용 가능성, 액상분사 시스템을 포함한 여러 가지 연료공급방식에 따른 엔진의 성능파악, 대형엔진에 적합한 최적 선회비의 결정, 연료조성에 따른 엔진성능의 변화 등을 알아보았다. 실험결과, 대형엔진에 LPG 연료의 적용은 아무런 문제점이 없었으며 LPi 연료공급방식은 다른 방식에 비해서 10%정도의 체적효율 및 출력의 증가를 확인할 수 있었다. 최적의 선회비는 2.0 부근에서 형성되었고, 연료 조성은 프로판 대 부탄의 비율이 60 : 40에서도 정상적으로 운전됨을 확인하였다. 시제품 엔진의 경우, 과급방식의 KL6i 엔진을 개발하기 앞서 좀더 기술적 접근이 용이한 자연흡입방식의 K-1엔진의 개발이 선행되었으며 현재 개발 진행중인 K-1엔진의 성능평가 결과, 기존의 디젤엔진에 비해 출력성능이 20% 정도 향상됨을 확인할 수 있었다. 특히 대형차량에서 중요시 생각되는 저속토크 성능이 매우 우수한 것으로 파악되었다. 이러한 결과를 바탕으로 단기통 연소엔진에서 확인된 최적화된 연료조성과 선회비를 향후 K-1엔진에 적용할 예정이다. 최근 열린 가스학회 추계발표회와 LPG자동차세미나의 주요내용을 게재한다.

  • PDF

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.

Engine Performance and Emission Characteristics in A HD Diesel Engine by the Application of GTL Fuel (대형디젤기관에서 GTL 연료 적용에 따른 기관성능 및 배출 가스 특성)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.998-1003
    • /
    • 2006
  • In this research, engine performance and emission characteristics of a 12,000cc heavy duty diesel engine was investigated by the application of GTL and ULSD fuels. The test was conducted at several engine speeds and loads under a single mode and a ESC mode. GTL fuel proves that it can be applicable to vehicles without engine modification.

  • PDF