Due to the increase of the aged population and population of the disabled today, there is a growing demand for rehabilitation medical instruments. Furthermore, there is a growing demand for evaluation indices for services that should be provided for uses of the rehabilitation medical instruments. In order to evaluate rehabilitation medical instrument designs in this study, the basic index for design evaluations shall be identified to search for assessment plans. Through this, new evaluation indices will be deduced through discussions and analysis of rehabilitation medical experts, biomedical engineers, and designers. The results of this study are summarized as follows. First, the existing design evaluation indices were collected and analyzed to construct 10 rehabilitation medical instrument design evaluation indices and 44 sub-evaluation items. These will be important evaluation standards for designing rehabilitation medical instruments in the future. Second, the design evaluation indices that must be taken into consideration when developing health care rehabilitation medical instruments are the 10 design evaluation indices of usability, cognition, safety, learning, motility, durability, economic feasibility, space, aesthetics and environmental aspects. Third, design evaluation indices of environment, space, cognition, usability, economic feasibility and aesthetics are indices that must be taken into consideration for product design, while learning, safety, motility and durability are factors that must be given special consideration for rehabilitation medical instrument design evaluation indices. Fourth, if existing product design evaluation indices placed importance on environment, space, cognition, usability, economic feasibility and aesthetics of products for design evaluation indices, rehabilitation medical instrument design evaluation indices placed importance on learning, safety, motility and durability on top of usability and economic feasibility, which are the differences between the design evaluation indices of rehabilitation medical instrument and other product designs. The 10 rehabilitation medical device design evaluation indices and 44 sub-evaluation items were carried out in this study. This research is only on the overall rehabilitation medical device design evaluation indices. In future research, the evaluation indices will be applied in the actual rehabilitation medical design device through production of prototypes, while making revisions and supplementations where necessary.