• Title/Summary/Keyword: 디스플레이 색 신호처리

Search Result 6, Processing Time 0.022 seconds

Chromatic Adaptation Model for the Variations of the Chromaticity tinder the Surround Viewing Conditions (주위 시환경의 색도 변화에 따른 색 순응 모델)

  • Kim, Eun-Su;Jang, Soo-Wook;Lee, Sung-Hak;Sohng, Kyu-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-28
    • /
    • 2005
  • Real surround viewing conditions in watching the color display devices such as TV and PC monitor are quite different from the standard viewing conditions. Human visual system is adapted chromatically under the different viewing conditions in luminance levels and chromaticity of illuminants. Accordingly, the reproduced colors of the same chromaticity will appear as quite different color. Therefore, it is necessary that the displayed colors are reproduced to be appeared as the original colors in the standard viewing conditions. In this paper, we propose a chromatic adaptation model for the variations of the surround illuminants' chromaticity under the same luminance conditions. In proposed chromatic adaptation model, we calculate each gain of L, M, and S as nonlinear functions according to the chromaticity of the surround illuminants. And the optimal coefficients are obtained from the corresponding colors data of the Breneman's experiments. The proposed chromatic adaptation model is compared with the conventional chromatic adaptation models. In the experimental results, the proposed model has very good performance in the whole range of luminance levels. We also experimentally confirmed that the reproduced corresponding colors using the proposed chromatic adaptation are appeared as the original colors when the real surround viewing conditions are different from the standard viewing conditions.

Implementation of Multiview Calibration System for An Effective 3D Display (효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현)

  • Bae Kyung-Hoon;Park Jae-Sung;Yi Dong-Sik;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.36-45
    • /
    • 2006
  • In this paper, multiview calibration system for an effective 3D display is proposed. This system can be obtain 4-view image from multiview camera system. Also it can be rectify lens and camera distortion, error of bright and color, and it can be calibrate distortion of geometry. In this paper, we proposed the signal processing skill to calibrate the camera distortions which are able to take place from the acquisited multiview images. The discordance of the brightness and the colors are calibrated the color transform by extracting the feature point, correspondence point. And the difference of brightness is calibrated by using the differential map of brightness from each camera image. A spherical lens distortion is corrected by extracting the pattern of the multiview camera images. Finally the camera error and size among the multiview cameras is calibrated by removing the distortion. Accordingly, this proposed rectification & calibration system enable to effective 3D display and acquire natural multiview 3D image.

Chromatic adaptation model for the variations of the luminance of the same chromaticity illuminants (동일 색도 광원의 휘도 변화에 따른 색 순응 모델)

  • Kim Eun-Su;Jang Soo-Wook;Lee Sung-Hak;Sohng Kyu-lk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, we propose the chromatic adaptation models (CAM) for the variations of the luminance levels. A chromatic adaptation model, CAM$\Delta$Y , is proposed according to the change of luminance level under the same illuminants. The proposed model is obtained by the transform the test colors of the high luminance into the corresponding colors of the low luminance. In the proposed model, the optimal coefficients are obtained from the corresponding colors data of the Breneman's experiments. In the experimental results, we confined that the chromaticity errors, $\Delta$u'v', between the predicted colors by the proposed model and the corresponding colors of the Breneman's experiments are 0.004 in u'v' chromaticity coordinates. The prediction performance of the proposed model is excellent because this error is the threshold value that two adjacent color patches can be distinguished. Additionally, we also propose equal-whiteness CCT curves (EWCs) by CAM$\Delta$Y according to the luminance levels of the surround viewing conditions. And the proposed EWCs can be used as the theoretical standard which determines the reference white of the color display devices.

A Study on Real Time Color Gamut Mapping Using Tetrahedral Interpolation (사면체 보간을 이용한 실시간 색역 사상에 관한 연구)

  • Kim, Kyoung-Seok;Kwon, Do-Hyung;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • A color gamut mapping has been known to be one of promising methods to enhance display quality of various types of color display device. However, it is required to handle this mapping in real time for display or digital TV application. If carefully arranged, the tetrahedral interpolation can be computed with simpler operations compared to a cubic interpolation in the conventional reduced resolution look-up table which is devised to process the gamut mapping in real time. Based on the tetrahedral interpolation, a new type hardware architecture for real-time gamut mapping is proposed in this paper. The proposed hardware architecture shows better processing speed and reduces the hardware cost.

An Adaptive Image Enhancement Algorithms Using Saturation Improvement (채도 향상을 이용한 적응형 화질 개선 알고리듬)

  • Jo, Young-Sim;Yun, Jong-Ho;Park, Jin-Sung;Choi, Myung-Ryul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1455-1464
    • /
    • 2006
  • In this paper, we propose an adaptive image enhancement algorithm. The proposed algorithm is classified with the MIE technique for intensity enhancement of input image and MSE techniques for saturation enhancement. The MIE technique is proposed to control the gamut mapping problem and a sudden change in image-brightness while Luminance signal is processing, The MSE techniques are proposed to control de-saturation or over-saturation while chrominance signal is processing. The proposed algorithm is focused on processing preference color for human vision in order to generate better image quality than the algorithms focused on processing uniformly to whole images, This algorithm can be applied to a monitor, TV and other display devices for high quality image.

  • PDF

A Study on Image Processing For Local Dimming Of LED BLU (LED BLU 분할구동(Local Dimming)을 위한 영상처리 알고리즘에 관한 연구)

  • Kwak, Nae Joung;Han, Seung Hun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.602-606
    • /
    • 2008
  • LCD is supplied light by BLU(Back Light Unit) and the light represents color by each color filter. Also LCD adjusts the amount of light by controlling liquid crystal between the glass of upper plate and one of lower. However, it is impossible to completely exclude light due to the structural and physical characteristic of liquid crystal. Therefore, on transfering light through optical sheet and liquid crystal, many problems are generated. They are related with energy efficiency and get effective for the contrast of LCD to have lower contrast ratio than other display devices. To solve the problems, many techniques have been studied and developed but don't exist keys to solution for them. Among methods, local dimming is one example to be applied to LCD. In this paper we propose image processing algorithm for local dimming of BLU of LED used as light source. The proposed algorithm extracts maximum luminance signal and lights using each extracted signal on segmented region of BLU. Also the proposed algorithm generates image signal in corresponding to luminance of the segmented region and supplies them with LCD panel to represent image with improving luminance ratio.

  • PDF