• Title/Summary/Keyword: 디스패리티 맵

Search Result 5, Processing Time 0.022 seconds

LASPI: Hardware friendly LArge-scale stereo matching using Support Point Interpolation (LASPI: 지원점 보간법을 이용한 H/W 구현에 용이한 스테레오 매칭 방법)

  • Park, Sanghyun;Ghimire, Deepak;Kim, Jung-guk;Han, Youngki
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.932-945
    • /
    • 2017
  • In this paper, a new hardware and software architecture for a stereo vision processing system including rectification, disparity estimation, and visualization was developed. The developed method, named LArge scale stereo matching method using Support Point Interpolation (LASPI), shows excellence in real-time processing for obtaining dense disparity maps from high quality image regions that contain high density support points. In the real-time processing of high definition (HD) images, LASPI does not degrade the quality level of disparity maps compared to existing stereo-matching methods such as Efficient LArge-scale Stereo matching (ELAS). LASPI has been designed to meet a high frame-rate, accurate distance resolution performance, and a low resource usage even in a limited resource environment. These characteristics enable LASPI to be deployed to safety-critical applications such as an obstacle recognition system and distance detection system for autonomous vehicles. A Field Programmable Gate Array (FPGA) for the LASPI algorithm has been implemented in order to support parallel processing and 4-stage pipelining. From various experiments, it was verified that the developed FPGA system (Xilinx Virtex-7 FPGA, 148.5MHz Clock) is capable of processing 30 HD ($1280{\times}720pixels$) frames per second in real-time while it generates disparity maps that are applicable to real vehicles.

Articulated Human Body Tracking Using Belief Propagation with Disparity Map (신뢰 전파와 디스패리티 맵을 사용한 다관절체 사람 추적)

  • Yoon, Kwang-Jin;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • This paper suggests an efficient method which tracks articulated human body modeled with markov network using disparity map derived from stereo images. The conventional methods which only use color information to calculate likelihood for energy function tend to fail when background has same colors with objects or appearances of object are changed during the movement. In this paper, we present a method evaluating likelihood with both disparity information and color information to find human body parts. Since the human body part are cylinder projected to rectangles in 2D image plane, we use the properties of distribution of disparity of those rectangles that do not have discontinuous distribution. In addition to that we suggest a conditional-messages-update that is able to reduce unnecessary message update of belief propagation. Since the message update has comprised over 80% of the whole computation in belief propagation, the conditional-message-update yields 9~45% of improvements of computational time. Furthermore, we also propose an another speed up method called three dimensional dynamic models assumed the body motion is continuous. The experiment results show that the proposed method reduces the computational time as well as it increases tracking accuracy.

Estimation of Disparity Map using MMAD and SIFT (MMAD와 SIFT를 이용한 디스패리티 맵 생성)

  • Shin, Do-Kyung;Moon, Young-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.510-515
    • /
    • 2007
  • 2차원 영상으로부터 3차원 정보를 획득하기 위해서는 disparity map의 정확한 계산이 요구된다. Disparity map을 구하기 위한 기존의 알고리즘은 크게 상관도 기반 방법과 특징 기반 방법으로 분류되는데, 본 논문에서는 이들 각 방법에 대한 분석을 통해서 좀 더 정확한 disparity map을 구하는 방법을 모색한다. 이를 위해 스테레오 카메라로부터 획득된 2차원 영상에서 건물에 대한 깊이 정보 추출을 위해 SIFT 기법을 이용한 disparity map 생성 알고리즘을 제안한다. 제안된 기법은 수정된 MAD인 MMAD(Modified Mean of Absolute Differences) 알고리즘을 새로 제안하여 영역 기반의 유사도 측정을 기반으로 하면서 특징 기반 방법의 하나인 SIFT를 적용하여 거짓 정합(false matching)에 의한 에러를 줄이고 폐색(occlusion) 영역에 대한 오류를 보정한 disparity map을 생성하는데 초점을 둔다.

  • PDF

Performance Improvement of Stereo Matching by Image Segmentation based on Color and Multi-threshold (컬러와 다중 임계값 기반 영상 분할 기법을 통한 스테레오 매칭의 성능 향상)

  • Kim, Eun Kyeong;Cho, Hyunhak;Jang, Eunseok;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • This paper proposed the method to improve performance of a pixel, which has low accuracy, by applying image segmentation methods based on color and multi-threshold of brightness. Stereo matching is the process to find the corresponding point on the right image with the point on the left image. For this process, distance(depth) information in stereo images is calculated. However, in the case of a region which has textureless, stereo matching has low accuracy and bad pixels occur on the disparity map. In the proposed method, the relationship between adjacent pixels is considered for compensating bad pixels. Generally, the object has similar color and brightness. Therefore, by considering the relationship between regions based on segmented regions by means of color and multi-threshold of brightness respectively, the region which is considered as parts of same object is re-segmented. According to relationship information of segmented sets of pixels, bad pixels in the disparity map are compensated efficiently. By applying the proposed method, the results show a decrease of nearly 28% in the number of bad pixels of the image applied the method which is established.

Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge (Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법)

  • Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 2015
  • Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.