무한차원 상공간에서의 디리클레 형식과 이에 관계된 확산과정에 대한 일반 이론을 소개하고, 이 이론을 물리학의 통계역학 모델에 적용하였다. 구체적으로, 고전 비유계 스핀계에 대한 통계역학적인 모델, 연속체 공간에서 상호 작용하는 무한 입자계에 대한 통계역학적인 모델에 응용하였다. 아울러서 확률 미분 방정식과 같은 디리클레 형식에 관련된 연구분야에 대해서도 간단히 알아보았다.
본 논문에서는 디리클레 분포와 베이즈 추론 모델을 활용하여 전자우편을 분류하고 정리하는 방법을 제안한다. 과거 원치 않는 광고성 이메일인 스팸 탐지에서 시작한 전자우편 분류는 지속적인 송수신 량의 증가와 내용의 다양화로 인해 광고성과 정보성의 판단 기준이 모호해진 상태이다. 스팸 탐지와 같은 이분법적 분류 방식이 아닌 내용의 주제 별로 자동 분류할 수 있는 방법이 필요하다. 본 논문에서 다루는 제안 기법은 전자우편의 내용에서 다뤄질 수 있는 주제의 종류를 예측하기 위한 방법을 제공한다. 발신하거나 수신된 전자우편이 속한 주제를 자동으로 정할 수 있다. 본 제안 기법의 활용을 통해 전자우편의 분류만이 아닌 업무 및 시장 동향 분석과 정보보안 분야에서는 악성코드 분류에 사용될 수 있을 것으로 기대된다.
The construction industry has more safety accidents than other industries. Although there have been more attempts to reduce safety hazards in the industry such as the enforcement of the "Serious Accidents Punishment Act (SAPA)", construction accident has not been reduced enough. In this study, analysis of safety risk factors has been made through Latent Dirichlet Allocation (LDA)-based topic modeling. Risk analysis in construction site would be improved with natural language processing and topic modeling.
토픽 추출은 문서 집합으로부터 그 문서 집합을 대표하는 토픽을 자동 추출하는 기술이며 자연어 처리의 중요한 연구 분야이다. 대표적인 토픽 추출 방법으로는 잠재 디리클레 할당과 단어 군집화 기반 토픽 추출방법이 있다. 그러나 이러한 방법의 문제점으로는 토픽 중복 문제와 토픽 혼재 문제가 있다. 토픽 중복 문제는 특정 토픽이 여러 개의 토픽으로 추출되는 문제이며, 토픽 혼재 문제는 추출된 하나의 토픽 내에 여러 토픽이 혼재되어 있는 문제이다. 이러한 문제를 해결하기 위하여 본 연구에서는 토픽 중복 문제에 대해 강건한 잠재 디리클레 할당으로 토픽을 추출하고 단어 간 유사도를 이용하여 토픽 분리 및 토픽 병합의 단계를 거쳐 최종적으로 토픽을 보정하는 방법을 제안한다. 실험 결과 제안 방법이 잠재 디리클레 할당 방법에 비해 좋은 성능을 보였다.
본 연구는 기계학습 기법 중 토픽 모델링을 활용하여 건설현장에서 발생하는 추락재해에 대한 토픽을 분류하고 각 토픽에 따른 재해요인을 분석하였다. 잠재 디리클레 할당 기반의 토픽 모델링을 적용하기 위해 텍스트 데이터의 전처리를 하였고 Perplexity 점수로 평가하여 모형의 신뢰성을 높였다. 각 토픽에서 공통으로 도출된 추락재해의 대부분은 소규모 사업장에 속한 일용직 작업자들에게 발생하였다. 추락재해의 대부분의 원인은 안전장비 미착용, 현장 정리 정돈 미흡, 안전장비의 성능 및 착용 상태로 인해 제대로 작동하지 않은 것으로 판단되었다. 추락재해를 예방하고 절감하기 위해서는 소규모 사업장에 맞는 안전교육과 작업장의 정리 정돈과 개인 안전장비의 적절한 착용 상태 및 성능을 확인하는 것이 중요한 것으로 도출되었다.
Not only in aviation industry but also in other industries, safety data plays a key role to improve the level of safety performance. By analyzing safety data such as aviation safety report (text data), hazard can be identified and removed before it leads to a tragic accident. However, pre-processing of raw data (or natural language data) collected from each site should be carried out first to utilize proactive or predictive safety management system. As air traffic volume increases, the amount of data accumulated is also on the rise. Accordingly, there are clear limitation in analyzing data directly by manpower. In this paper, a topic prediction model for aviation safety mandatory report is proposed. In addition, the prediction accuracy of the proposed model was also verified using actual aviation safety mandatory report data. This research model is meaningful in that it not only effectively supports the current aviation safety mandatory report analysis work, but also can be applied to various data produced in the aviation safety field in the future.
알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.
영상처리 분야의 중요한 주제인 영상의 잡음 제거 과정은 원래의 순수한 영상이 다양한 원인으로 발생한 잡음에 의해 오염되었을때 이 잡음을 제거하거나 줄이는 것을 의미한다. 잡음 제거 과정에서는 영상에 추가된 잡음과 원 영상이 가진 고유한 특징들을 구별해내는 것이 중요하며 이에 대한 많은 연구가 진행되고 있다. 적응적 필터와 시그마 필터는 잡음 제거를 위하여 사용하는 대표적인 잡음 제거 필터이며 이 필터들의 효용성은 정확한 잡음 추정에 영향을 받는다. 따라서 본 연구에서는 디리클레 정규 혼합모형을 토대로 영상을 오염시키고 있는 잡음의 분포를 생성하고 이를 토대로 영상의 특징과 잡음을 구별하기 위한 베이지안 방법을 제시한다. 특히 잡음의 분포와 특징의 분포를 구별하기 위해 베이지안 추론을 전개하고 영상에 포함된 잡음을 제거하는 알고리즘을 제시하고자 한다.
본 논문에서는 비교사학습법을 통해 영상의 방대한 정보를 효율적으로 모델링 하는 방법을 제안하고자 한다. 여기서 이동궤적들은 자연어 처리에 사용되는 알고리즘인 잠재 디리클레 할당 모형(Latent Dirichlet Allocation)에 의해 직진, 좌회전, 우회전등 각 상황 별로 주제에 따라 그 영역을 효과적으로 분류할 수 있다. LDA를 이용해 주제별로 의미 있는 영역을 분류한 후, 각 주제별로 분류된 궤적을 관측열로 보고 은닉 마르코프 모델(Hidden Markov Model)의 바움-웰치 알고리즘을 사용하여 학습한다. 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 비교함으로써 영상내의 행동이 정상인지 비정상인지를 효과적으로 판단할 수 있다. 실험결과 다양한 영상에 대해 의미있는 주제별로 영역이 잘 분류되며 추적에러로 인한 궤적의 노이즈에도 강인하게 물체의 무단횡단, 신호위반과 같은 상황을 효과적으로 탐지하는 것을 확인할 수 있다.
기존의 범죄 예측 방법들은 범죄 발생을 예측하기 위해 기존 기록을 이용하였다. 그러나 이러한 범죄 예측 모델은 데이터를 갱신하는데 어려움이 있다. 범죄 예측을 향상시키기 위해서 소셜 네트워크 서비스(SNS)를 이용하여 범죄를 예측하는 연구들이 진행되었지만, SNS 데이터와 범죄 기록 사이의 관계에 대한 연구는 미흡하다. 따라서, 본 논문에서는 SNS 데이터와 범죄 발생 사이의 관계를 범죄 예측의 관점에서 분석하였다. 잠재 디리클레 할당(LDA)을 이용하여 범죄 발생과 관련된 단어를 포함하는 트윗을 추출하였고, 범죄 기록에 따른 트윗 빈도의 변화를 분석하였다. 범죄 관련 단어를 포함하는 트윗의 빈도를 계산하고, 범죄 발생에 따라서 트윗 빈도를 분석하였다. 범죄가 발생하였을 때, 범죄와 관련된 트윗의 빈도가 변화하였다. 게다가, 범죄 발생 전후에 트윗 빈도가 특정 패턴을 보이기 때문에 SNS 데이터가 범죄 예측 모델에 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.