• Title/Summary/Keyword: 등온선

Search Result 227, Processing Time 0.026 seconds

Convective Heat Transfer in a Channel with an Isothermal Rectangular Beam (한 개의 등온사각빔이 부착된 채널에서의 대류열전달)

  • Kwon, Sun-Sok;Ree, Jae-Shin
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.75-90
    • /
    • 1994
  • Thermal energy transport in a two-dimensional horizontal and vertical channel with an isothermal rectangular beam attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless aspect equations. The solutions have been obtained for dimensionless aspect ratios of beam, H/B=$0.25{sim}4$, Reynolds numbers, Re=$50{\sim}500$ and Grashof numbers, Gr=$0{\sim}5{\times}10^4$. The mean Nusselt number, $\overline{Nu}$ for horizontal and vertical channels shows same value at Gr=0 and increases as Gr increases and decreases as H/B increases at Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B{\leq}4.0$ than that of horizontal channel at $Gr=10^4$, Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B=1.0$ than that of horizontal channel at Re=100, $0<Gr{\leq}5{\times}10^4$. A comparison between the experimental and numerical results shows good agreement.

  • PDF

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Phosphate Adsorption of Youngdong Illite, Korea (영동 일라이트의 인산염 흡착 특성)

  • Cho, Hyen-Goo;Park, Ok-Hee;Moon, Dong-Hyuk;Do, Jin-Young;Kim, Soo-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • Mineral compositions were determined using quantitative X-ray diffraction analysis on the three kinds of Youngdong illite consisting of white, yellow and refined yellow samples. Mean particle size and their size distribution patterns were measured by laser particle size analyzer. The characteristics of phosphate adsorption on illite were studied through batch adsorption experiments. The white illite has less illite content, but is finer than that of yellow. The refined yellow illite has more illite content and finer particle size compared with those of raw yellow illite. The adsorption rate of phosphate generally increases when the mass of illite increases, whereas adsorption quantity decreases with ascending pH. The phosphate adsorption usually increases with ascending illite content or descending particle size. Although the white illite has lower illite content than the yellow, the former has higher phosphate adsorption quantity than the latter. This can be ascribed to the fine particle size, high interlayer charge, and low substitution in tetrahedral site of white illite. The adsorption isotherms of white illite are well fitted with the Langmuir equation, however those of yellow one are better with Freundlich equation.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Analytical Method for Moisture Vaporization of Concrete under High Temperature (고온조건에서 콘크리트의 수분증발 해석기법)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.538-545
    • /
    • 2017
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the concrete members at fire is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

Model and Experimental Isotherms of Soluble Proteins at Water Surfaces (수용성 단백질의 계면상 등온곡선의 모델과 실험적 규명)

  • Sung Hyun Kwon;Daechul Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.230-235
    • /
    • 2003
  • 수용성, 구형의 단백질 분자는 기능성(효소, 유화제, 중화제 등)에 따라 센서나 유사생체기관에 응용성이 크다. 본 연구는 물-공기 계면에서 형성되는 단백질의 표면상태방정식(일명 표면등온선)을 이론적으로 도출하고 그 결과를 실험적으로 확인하여 단백질 분자의 기능적 이용에 활용하고자 한 것이다. 아미노산 부분사슬간, 분자와 물과의 인력, 정전기적 인력을 고려하여 종합적 상태방정식을 도출하였으며 탄소 14로 tagging한 albumin실험과 비교하여 상당히 일치하는 경향을 확인할 수 있었다.

  • PDF

Numerical Analysis on Natural Convection of Water in a Rectangular Vessel (직사각형용기내 물의 자연대류현상에 관한 수치해석)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.299-305
    • /
    • 2008
  • This present study has dealt with the natural convection of water in a rectangular vessel which has cooling point at the center of itself with numerically. The finite difference method (FDM) is presented for the two-dimensional computer simulation of water controlled by natural convection and heat conduction. According to this study, It is cleared that the overturn of density is clearly existed at the temperature of $4[^{\circ}C]$ and that was compared with experimental result. Also the change of natural convection is known from the streamlines and isotherms. Most of all. It is cleared that the overturn of natural convection is changed with time caused by the fact that the temperature and density relationship of water.

The Study of Mixed Convection in a Room with Heated Bottom Surface and various Partitions (밑면이 가열되고 다양한 격판을 가진 실내공간에서의 혼합대류 열전달)

  • Lee, C.J.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 1998
  • The study of mixed convection in a room with heated bottom surface and various partitions has been numerically investigated using a finite volume method. The parameters studied here are, 50$\overline{Nu}=\overline{Nu_n}{\cdot}(1+c(Re/Gr^{1/2})^d)$, where $\overline{Nu_n}$ corresponds to pure natural convextion.

  • PDF

Preparation of Ultra-Thin Polyimide Film by Using Langmuir-Blodgett(LB) Method (Langmuir-Blodgett(LB)법을 이용한 폴리이미드 초박막의 제작)

  • Kim, Yong-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.151-155
    • /
    • 1994
  • Polyamic acid alkylamine (N, N-dimethylhexadecylamine)(PAAS)염을 합성하여 그 합성여부를 확인하였으며 PAAS염의 Langmuir막의 ${\pi}-A$ 등온선 및 표면 전위 특성 등을 조사 하였다. Langmuir-Blodgett법에 의하여 PAAS염의 LB막을 여러종류의 기관에 누적하였으며 누적여부를 자외선 흡수 스펙트럼 및 적외선 투과 스펙트럼을 이용하여 조사하였다. 그리고 PAAS LB막을 열처리에 의하여 이미드(imide)화시켜 폴리이미드 LB막을 제조하였으며 그 이미드화 여부를 자외선 및 적외선 스펙트럼을 이용하여 조사하였다.

Theoretical Analysis on the Heat and Mass Transfer in a Sorption Cool Pad (흡습 냉각 패드에서의 열 및 물질전달에 관한 연구)

  • 황용신;이대영;박봉철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • A sorption cool pad brings cooling effect without any pre-cooling, nor any external energy supply. It uses evaporative cooling effect stimulated by the desiccative sorption. In this paper, heat and mass transfer in the sorption cool pad are investigated theoretically. The evaporative cooling process caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. Two nondimensional parameters are found to dominate the cooling process: one is related to the psychrometric characteristics and the other is to the sorption capacity of the desiccant. The former decides the time to reach the lowest temperature and the later controls the time duration of the cooling effect being sustained.