• Title/Summary/Keyword: 등온단조

Search Result 7, Processing Time 0.018 seconds

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

Isothermal Forging Design in Turbine Disk by Finite Element Method (터빈디스크의 등온단조 공정설계를 위한 유한요소 해석)

  • 김태호;박노광;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.93-98
    • /
    • 1996
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study. A finite element method has been applied for iso-thermal forging design in turbine disk. This kind of approach is good for minimize actual redesign of die. which can reduce die production cost. - vital importance in current industrial environment.

  • PDF

엘립소메츠리에 의한 이온주입 실리콘층의 특성연구

  • Kim, Sang-Ki;Lee, Sang-Hwan;Lee, Won-Hyong;Kwon, Oh-Joon;Koak, Byong-Hwa
    • ETRI Journal
    • /
    • v.10 no.4
    • /
    • pp.140-145
    • /
    • 1988
  • 엘립소메츠리를 이용하여 $B^+$$As^+$ 이온이 주입된 실리콘층의 굴절률과 소멸계수를 도우즈 및 열처리 조건의 함수로 조사하였다. $B^+$ 이온주입된 실리콘의 경우 n은 $10^13$ 도우즈 이상에서 증가하고, k는 도우즈 증가에 따라 단조 증가를 나타내었다. RTA 열처리가 furnace 열처리 보다 결정성 회복이 우수하였으며, 등온 열처리 시 약 30분이상에서 거의 완전하게 재결정됨을 볼 수 있었다. $As^+$ 이온주입의 경우 $10^15$이상에서 복소굴절률의 변화를 나타내었으며, 열처리에 대해 k가 n보다 민감하였다.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

The Effect of Isothermal Annealing on Microstructure of Forged Parts (단조품의 등온 어닐링에 따른 미세조직 변화)

  • Kim, D.B.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 한정영;최철현;배원병;김영호;이종헌
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.204-208
    • /
    • 2000
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity, geometrical size, and die velocity of model materials are different from those of real materials. Actually, the forming load of yoke, which is an automobile part made of aluminum alloys(Al-6061), is predicted by using this approximate similarity theory. Firstly, upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061), and a suitable model material is selected for model material test of Al-6061. And then hot forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material, which has been selected from above upset forging tests. The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

Recrystallization Behavior of Mo-1.17 Ti-0.18 Zr-0.06 C Alloy (Mo-1.17 Ti-0.18 Zr-0.06 C 합금의 재결정거동에 관한 연구)

  • Yoon, Kook Han;Lee, Chong Mu;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.319-325
    • /
    • 1992
  • Plasma are melting method was used in making Mo-1.17 Ti-0.18 Zr-0.06 C ingot having over 99% of the theoretical density. Oxygen content herewith, decreased from the origin of 830ppm to 40ppm. After cold rolling of Mo alloy by 50%, the recrystallization behaviors were studied in the temperature range from $800^{\circ}C$ to $2100^{\circ}C$ for 1 hr isochronical holding time and also at $1400^{\circ}C$, $1500^{\circ}C$, $1600^{\circ}C$ for varying isothermal holding time 0 to 108000sec. The complete recrystallization temperature of Mo was $1400^{\circ}C$ but that of Mo alloy was $1700^{\circ}C$. 50%-1 hr recrystallization temperature of Mo alloy sheet was about $1500^{\circ}C$ and when compared to Mo there was an increase of over $300^{\circ}C$. The activation energy of recrystallization of Mo alloy sheet was 508kJ/mol.

  • PDF