• Title/Summary/Keyword: 등락예측

Search Result 45, Processing Time 0.023 seconds

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

On the efficient buffer management and early congestion detection at a Internet gateway based on the TCP flow control mechanism (TCP 흐름제어를 이용한 인터넷 게이트웨이에서의 예측기반 버퍼관리 및 조기혼잡예측기법)

  • Yeo Jae-Yung;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.29-40
    • /
    • 2004
  • In this paper, we propose a new early congestion detection and notification technique called QR-AQM. Unlike RED and it's variation, QR-AQM measures the total traffic rate from TCP sessions, predicts future network congestion, and determine the packet marking probability based on the measured traffic rate. By incorporating the traffic rate in the decision process of the packet marking probability, QR-AQM is capable of foreseeing future network congestion as well as terminating congestion resolution procedure in much more timely fashion than RED. As a result, simulation results show that QR-AQM maintains the buffer level within a fairly narrow range around a target buffer level that may be selected arbitrarily as a control parameter. Consequently, compared to RED and its variations, QR-AQM is expected to significantly reduce the jitter and delay variance of packets traveling through the buffer while achieving nearly identical link utilization.

우리나라 채권수익률(債券收益率)의 이분산성(異分散性)에 관한 연구

  • Jang, Guk-Hyeon;Lee, Jin
    • The Korean Journal of Financial Management
    • /
    • v.13 no.1
    • /
    • pp.203-220
    • /
    • 1996
  • 본 연구에서는 우리나라 채권시장의 변동성 분석과 추정을 위하여 Markov-Switching ARCH (SWARCH)모형과 GMM모형 및 I-GARCH모형을 적용하였다. 관측된 자료는 1993년 1월에서부터 1996년 4월까지의 주별 91일물 양도성 예금증서 수익률이다. 본 연구에서 채권 수익률 분산과정의 추정을 위해 사용하는 SWARCH 모형은 경제나 채권시장의 국면전환으로 말미암아 채권수익률의 변동성이 이질적인 분포에서 오는 경우 서로 다른 분산 국면의 확률적 식별이 가능할 뿐만 아니라 지속성이 GARCH모형보다 작아서 조건부 변동성의 예측력이 뛰어난 모형으로 알려져 있다. 또한 SWARCH모형은 베이즈이론에 의한 확률의 개념으로 국면전환을 추정하기 때문에 주관적인 국면전환시점의 판단이 불필요하다는 장점을 가진다 여러 가지 모형들의 추정결과 I-GARCH 모형과 SWARCH 모형등이 우리나라 단기 채권수익률의 조건부 변동성을 비교적 잘 설명해 내는 것으로 나타났으며 우리나라 단기 채권시장은 1993년 6월부터 1993년 12월초까지, 1994년 7월경부터 1995년 5월경까지 비교적 높은 변동성을 유지하였으며 그후로는 변동성이 등락을 계속하는 것으로 추정되었다. 본 연구의 결과 아직은 태동단계에 머물러 있는 한국 채권시장의 시계열적 특성을 체계적으로 문서화하고 정교하고 다양한 최근 계량기법을 체계적으로 정리하고 응용하여 시장 참가자들의 기회비용과 시행착오의 기간을 단축시키는데 도움을 줄 수 있을 것으로 기대된다.

  • PDF

Comovement of International Stock Market Price Index (주가동조현상에 관한 연구)

  • Khil, Jae-Uk
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.181-200
    • /
    • 2003
  • Comovement of international stock market prices has been lately a major controversy in the global stock market. This paper explores whether the common trend has really existed among the US, Japan and Korea's stock markets using the econometric techniques such as VAR, VECM as applied. Pair of indices from the exchange market and the over-the-counter market in each country has been tested, and the exchange market only has been turned out that the common trend existed. The dynamic analyses using the Granger causality test, impulse response function, and the forecast error decomposition have followed to show that the US stock market has played some important role in the Korea and Japan's market in the exchange as well as in the OTC market. The results of the paper imply that the more careful investigation with respect to the co-integration may be necessary in the global market integration studies.

  • PDF

Growth Modeling of Chinese Cabbage in an Alpine Area (고랭지 배추의 생장모의)

  • Ahn, Jae-Hoon;Kim, Ki-Deog;Lee, Jeoung-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.309-315
    • /
    • 2014
  • Summer cabbages in an alpine area are very sensitive to the fluctuations in supply and demand. Yield variability due to weather conditions dictates the market fluctuations of cabbage price. This study reports an empirical relationship based on weather conditions to estimate the growth and harvestable biomass of cabbages, factors that are critical for supply of summer cabbages. Based on experimental results testing sowing date effects over the two years from 1997 to 1998, a logistic equation was parameterized to predict leaf area expansion of summer cabbages. This logistic model for leaf area expansion was then combined with an empirical allometric relationship to predict total biomass. The final equation for estimating fresh weight accumulation of Chinese cabbage is given by: $$Fresh\;weight=3500/(1+{\exp}(5.175-1.153{\times}(6/(1+{\exp}(6.367-0.0064{\times}PHU)))))$$ Where PHU is potential heat units ($^{\circ}C$). The model performance was tested using weather data from 2003 to 2006 to predict fresh harvestable biomass. Overall the model performance was satisfactory with the correlation efficient ranging between 0.89 and 0.94 for each year.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Convergence analysis about volatility of the stock markets before and after the currency crisis - With a focus on Normal distribution, kurtosis, skewness (외환위기 전후 주식시장의 변동성에 관한 융복합 분석 - 정규분포, 첨도, 왜도를 중심으로)

  • Choi, Jeong-Il
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.153-160
    • /
    • 2015
  • The domestic stock market has been subjected to a major change since the September 1997 financial crisis. Foreign capital came repeat themselves in the stock market and bond market, foreign exchange market opening up domestic financial markets after the financial crisis. The domestic stock market has been most affected by domestic capital before the financial crisis. But it has been receiving an absolute influenced by foreign capital after the financial crisis. The purpose of this study is to analyze the trends in the two sections that look at any changes in the volatility of the KOSPI appears after the crisis. To this, obtained a daily weekly monthly normal distribution and kurtosis, skewness degree it should be analyze the tilt phenomenon and variability of the two intervals. This study also predict the future movement of the domestic stock market Based on this, look at the difference between the two sections. Analysis result, after the financial crisis change width has a reduction but direction of the KOSPI has appeared relatively distinct in the medium to long term. Based on this future market seems desirable the mid- to long-term investment looking for direction.

Stock Market Prediction Using Sentiment on YouTube Channels (유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측)

  • Su-Ji, Cho;Cheol-Won Yang;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF