• 제목/요약/키워드: 등락예측

검색결과 45건 처리시간 0.022초

엔트로피 기반 인과관계 네트워크의 모듈성을 활용한 상품 선물 시장의 EDaR 변동 예측 모형 개발 (Developing an Entropic Drawdown-at-Risk (EDaR) Fluctuation Forecasting Model for Commodity Futures Market Using Entropy-Based Dependency and Causality Network Modularity)

  • 최인수;김우창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.370-373
    • /
    • 2022
  • 본 연구에서는 전이 엔트로피 개념을 활용하여 주요 상품 선물의 하방 리스크 지수의 정보 흐름을 바탕으로 한 인과관계 네트워크를 구성하였다. 그리고 구성된 네트워크를 활용하여 금융 시장을 분석하였으며, 또한 정보 흐름의 존재 여부를 바탕으로 상품 선물의 하방 리스크 지수의 예측력이 개선될 수 있는지 확인하고자 하였다. 이를 위하여 정보 불확실성의 감소량을 측정하는 전이 엔트로피를 인과관계의 측정 지표로 상정하였으며, 전이 엔트로피 측정 시 발생할 수 있는 유한크기효과(finite size effect)를 조정하는 데 있어서 효과적인 지표인 효율적 전이 엔트로피를 활용하여 정보 흐름 네트워크를 구성하였으며 이를 이용하여 금융 지수 간의 인과관계를 분석하고 EDaR 의 등락 예측에 활용하였다. 그 결과, 금융 시장 지수를 효율적 전이 엔트로피를 이용한 인과관계 네트워크를 활용하여 금융 시장의 복잡계 네트워크 분석이 가능함을 확인하였고, 구성된 네트워크를 활용하여 국내 금융 시장 등락 예측에 있어 더 적은 데이터 열을 활용하여 거의 유사한 예측 결과를 냄으로써 상품 선물 시장 관련 예측의 데이터 열 선택에 활용할 수 있음을 확인하였다.

설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형 (The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning)

  • 홍태호;원종관;김은미;김민수
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.129-148
    • /
    • 2023
  • 블록체인 기술이 적용되어 있는 암호화폐는 높은 가격 변동성을 가지며 투자자 및 일반 대중으로부터 큰 관심을 받아왔다. 이러한 관심을 바탕으로 암호화폐를 비롯한 투자상품의 미래가치를 예측하기 위한 연구가 이루어지고 있으나 예측모형에 대한 설명력 및 해석 가능성이 낮아 실무에서 활용하기 어렵다는 비판을 받아왔다. 본 연구에서는 암호화폐 가격 예측모형의 성과를 향상시키기 위해 금융투자상품의 가치평가에 활용되는 기술적 지표들과 함께 투자자의 사회적 관심도를 반영할 수 있는 구글 키워드 검색량 데이터를 사용하고 설명 가능한 인공지능을 적용하여 모형에 대한 해석을 제공하고자 한다. 최근 금융 시계열 분야에서 예측성과의 우수성을 인정받고 있는 LSTM(Long Short Term Memory)과 CNN(Convolutional Neural Networks)을 활용하고, 'bitcoin'을 검색어로 하는 구글 검색량 데이터를 적용해 일주일 후의 가격 등락 예측모형을 구축하였다. LSTM과 CNN을 활용해 구축한 모형들이 높은 예측성능을 보였으며 구글 검색량을 반영한 모형에서 더 높은 예측성과를 확인할 수 있었다. 딥러닝 모형의 해석 가능성 및 설명력을 위해 XAI의 SHAP 기법을 적용한 결과, 구글 검색량과 함께 과매수, 과매도 정도를 파악할 수 있는 지표들이 모형의 의사결정에 가장 큰 영향들을 미치고 있음을 파악할 수 있었다. 본 연구는 암호화폐 가격 등락 예측에 있어 전통적으로 시계열 예측에 우수한 성과를 인정받고 있는 LSTM뿐만 아니라 이미지 분류에서 높은 예측성과를 보이는 딥러닝 기법인 CNN 또한 우수한 예측성능을 보일 수 있음을 확인하였으며, XAI를 통해 예측모형에 대한 해석을 제공하고, 대중의 심리를 반영하는 정보 중 하나인 구글 검색량을 활용해 예측성과를 향상시킬 수 있다는 것을 확인했다는 점에서 의의가 있다.

분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과 (Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price)

  • 김선웅
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.157-177
    • /
    • 2022
  • 투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.

호가창과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측 기법 (Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines)

  • 류의림;이기용;정연돈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.63-79
    • /
    • 2022
  • 최근 머신러닝 및 딥러닝 기법을 활용한 주식 가격 예측 연구가 다양하게 이루어지고 있다. 그 중에서도 최근에는 주식 매수 및 매도 주문 정보를 담고 있는 호가창을 이용하여 주가를 예측하려는 연구가 시도되고 있다. 하지만 호가창을 활용한 연구는 대부분 가장 최근 일정 기간 동안의 호가창 추이만을 고려하며, 호가창의 중기 추이와 단기 추이를 같이 고려하는 연구는 거의 진행되지 않았다. 이에 본 논문에서는 호가창의 중기와 단기 추이를 모두 고려하여 주가 등락을 보다 정확히 예측하는 딥러닝 기반 예측 모델을 제안한다. 더욱이 본 논문에서 제안하는 모델은 중단기 호가창 정보 외에도 해당 종목에 대한 동기간 뉴스 헤드라인까지 고려하여 기업의 정성적 상황까지 주가 예측에 반영한다. 본 논문에서 제안하는 딥러닝 기반 예측 모델은 호가창 변화의 특징을 합성곱 신경망으로 추출하고 뉴스 헤드라인의 특징을 Word2vec을 이용하여 추출한 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락 여부를 예측한다. 실제 NASDAQ 호가창 데이터와 뉴스 헤드라인 데이터를 사용하여 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 모델에 비해 정확도를 최대 17.66%p, 평균 14.47%p 향상시켰다. 또한 해당 모델로 모의 투자를 수행한 결과, 21 영업일 동안 종목에 따라 최소 $492.46, 최대 $2,840.83의 수익을 얻었다.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.59-66
    • /
    • 2023
  • 골든크로스를 흔히 매수의 신호로 인식하지만, 주식시장은 변동성이 매우 크기에 골든크로스만으로 주식의 등락 여부를 예상하고 의사결정을 내리기에는 무리가 있다. 마찬가지로, 이러한 주가 데이터의 불확실성은 기존의 시계열 기반의 예측을 더욱 어렵게 한다. 본 논문에서는 골든크로스를 하나의 사건으로 인식하여, time-invariant 한 접근을 시도하고자 한다. LSTM 신경망 기법을 사용하여 골든크로스 이후의 주가 변화율을 예측하고, 기존의 시계열 분석에서 도출한 성능과 종목별로 비교한다. 또한, 0을 기준으로 한 주가 변화율의 등락을 혼동행렬로 분류하여 일반화 분류 성능을 입증한다. 최종적으로 본 논문은 예측 정밀도가 83%인 모델을 제안하였다. 골든크로스가 나타날 때 모든 상황에서 매수를 결정하기보다 모델을 활용하여 투자자의 투자 자본 손실을 방지할 수 있다.

원유시장동향과 도입현황

  • 김종구
    • Tribology and Lubricants
    • /
    • 제2권1호
    • /
    • pp.9-17
    • /
    • 1986
  • 원유시세의 대폭 하락현상은, 재정이 빈약한 산유국의 외채상환능력과 관련하여 국제금융혼란을 유발하며, 유전 및 대체에너지의 개발을 위축시킴으로써 결국은 고수준의 유가상승을 초래한다는 장기전망, 그러나 우선 상당기간은 배럴당 18$ 이하의 낮은 수준에서 원유가가 등락한다는 예측이 일반화되고 있다. 이러한 역오일.쇼크-저유가시대를 맞아 석유에 대한 이해를 돕기 위해 국제시황 및 국내도입 상황등을 살펴 본다.

증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측 (The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF)

  • 양수연;이채록;원종관;홍태호
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.237-262
    • /
    • 2022
  • 본 연구는 개인투자자들의 투자의사결정에 도움을 주고자, 증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용해 공모주의 상장 5거래일 이후 주식 가격 등락을 예측하는 모델을 제시한다. 연구 표본은 2009년 6월부터 2020년 12월 사이에 신규 상장된 691개의 국내 IPO 종목이다. 기업, 공모, 시장과 관련된 다양한 재무적 및 비재무적 IPO 관련 변수와 증권신고서의 어조를 분석하여 예측했고, 증권신고서의 어조 분석을 위해서 TF-IDF (Term Frequency - Inverse Document Frequency)에 기반한 텍스트 분석을 이용해 신고서의 투자위험요소란의 텍스트를 긍정적 어조, 중립적 어조, 부정적 어조로 분류하였다. 가격 등락 예측에는 로지스틱 회귀분석(Logistic Regression), 랜덤 포레스트(Random Forest), 서포트벡터머신(Support Vector Machine), 인공신경망(Artificial Neural Network) 기법을 사용하였고, 예측 결과 IPO 관련 변수와 증권신고서 어조 변수를 함께 사용한 모델이 IPO 관련 변수만을 사용한 모델보다 높은 예측 정확도를 보였다. 랜덤 포레스트 모형은 1.45%p 높아진 예측 정확도를 보였으며, 인공신공망 모형과 서포트벡터머신 모형은 각각 4.34%p, 5.07%p 향상을 보였다. 추가적으로 모형간 차이를 맥니마 검정을 통해 통계적으로 검증한 결과, 어조 변수의 유무에 따른 예측 모형의 성과 차이가 유의확률 1% 수준에서 유의했다. 이를 통해, 증권신고서에 표현된 어조가 공모주의 가격 등락 예측에 영향을 미치는 요인이라는 것을 확인할 수 있었다.

역전파 신경망을 이용한 주가 예측 (Stock Price Prediction Using Backpropagation Neural Network)

  • 박사준;이상훈;고삼일;김기태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 역전파 신경망(Backpropagation Neural Network)을 시계열 데이터인 주가 데이터를 이용한 주가 예측의 정확도를 향상시키기 위한 학습 방법으로 적용하였다. 실제 증권거래소의 종목 데이터에서 비교적 등락폭이 안정적인 각 산업분야별 5개 기업의 5일 이동평균선 데이터 240개를 훈련 데이터로, 20개는 테스트 데이터로 이용하였다. 선정된 입력 데이터를 은닉층의 개수와 은닉 노드의 개수 등을 달리 하면서 10,000번의 훈련을 통해서 실험 하였으며, 그 결과 1개의 은닉층을 사용한 네트워크1은 20개의 테스트 데이터 사이의 19개의 신호 중 14개를 예측하였고, 2개의 은닉층을 사용한 네트워크 2는 16개를 예측하였다. 시험 결과를 통해서 보듯이 은닉층을 2개 사용하였을 때 보다 좋은 실험 결과를 얻을 수 있었으며, 역전파 신경망 모델이 주가 예측에 적합하다는 것이 증명되었다.

  • PDF

뉴스와 비트코인 가격변동 간의 상관관계에 관한 연구 (A Study on the Correlation between News and Bitcoin Price Changes)

  • 오동혁;박상원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.440-442
    • /
    • 2022
  • 2017년 가치가 급상승하며 전 세계적으로 큰 이슈를 끈 비트코인은 최근 많은 사람들의 재태크 수단으로 이용되고 있다. 그러나 비트코인은 비슷한 재태크 수단인 주식과 다르게 24시간 내내 거래되고, 기사 하나하나에 의해 가격변동의 폭이 굉장히 크다. 이는 가격이 급변하는 비트코인 시장에서 가격을 예측하는데 어렵게 작용한다. 본 논문에서는 직접적인 가격 예측은 어렵다고 판단해 비트코인 가격변동에 영향을 주는 요소들을 딥러닝 모델을 통해 일일 단위 종가 가격의 등락을 예측해 위의 요소들이 비트코인 가격변동과 상관관계를 가지는지 확인한다.

석유개발의 경제학

  • 신의순
    • 자원ㆍ환경경제연구
    • /
    • 제4권2호
    • /
    • pp.383-393
    • /
    • 1995
  • 석유개발사업은 고도의 위험성, 투자자금의 장기회임성, 그리고 대규모 투자자금의 필요성등의 특성을 가지고 있다. 따라서 개발사업에 참여하기에 앞서 개발비용과 향후 유가추이를 면밀히 검토하여야 한다. 국제원유시장은 기본적으로 공급초과 상태에 있으며 앞으로 상당기간동안 가격은 안정추세를 나타낼 것이다. 단기적 등락에도 불구하고 원유가격은 장기적으로 상승할 것이라는 당대의 견해는 이른바 유한고갈성자원의 희소렌트가 이자율과 같은 속도로 상승한다는 '호텔링의 모형'에 이론적 기초를 두고 있다. 그러나 국제원유시장에서의 원유가격은 경쟁가격이 아니라 OPEC카르텔에 의한 담합가격으로 실제적 시장상황에 비해 인위적으로 높게 유지되어 왔다. '카오스 이론'에 따르면 석유시장은 동태적으로 구조변화를 반복하기 때문에 사전적으로 석유가격을 예측한다는 것은 애당초 불가능하다. 따라서 불규칙적으로 변화하는 석유가격을 예측하려고 노력하기보다는 석유시장의 불확실성을 인정하고 선물시장의 활용을 통해 석유개발과 관련된 위험을 줄여나가야 할 것이다.

  • PDF