• Title/Summary/Keyword: 등각 기하 대수

Search Result 2, Processing Time 0.016 seconds

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Geometric Singularity Avoidance of a 3-SPS/S Parallel Mechanism with Redundancy using Conformal Geometric Algebra (여유자유도를 가진 3-SPS/S 병렬 메커니즘의 등각 기하대수를 이용한 기하학적 특이점 회피)

  • Kim, Je Seok;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-261
    • /
    • 2015
  • A parallel mechanism with redundancy can be regarded as a means for not only maximizing the benefits of parallel mechanisms but also overcoming their drawbacks. We proposed a novel parallel mechanism by eliminating an unnecessary degree of freedom of the configuration space. Because of redundancy, however, the solution for the inverse kinematics of the developed parallel mechanism is infinite. Therefore, we defined a cost function that can minimize the movement time to the target orientation and found the solution for the inverse kinematics by using a numerical method. In addition, we proposed a method for determining the boundary of the geometric singularity in order to avoid singularities.