• Title/Summary/Keyword: 등가 하중

Search Result 480, Processing Time 0.023 seconds

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads (등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구)

  • Jang, Hwan-Hak;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.

Equivalent Loads for Spot-Weld Distortions (점용접 변형에 대한 등가하중)

  • Chu, Seok-Jae;Lee, Sang-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1499-1504
    • /
    • 2007
  • Spot-welding is widely used to construct passenger car bodies in automotive industry. Occasionally severe spot-weld distortions in sub-assembly make further spot-weld difficult. In this paper, distortions for various spot-weld conditions are measured using coordinate measuring machine. Then, based on finite element solution for unit translation or unit rotation of nugget edge, equivalent loads for spot-weld distortions are determined. They can be used to predict the spot-weld distortion using finite element method.

  • PDF

Thermoelectromechanical analysis of piezoelectric fiber composites (열-전기-기계 하중하의 압전섬유 복합재료 해석)

  • Kim, Jun-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.290-291
    • /
    • 2011
  • 본 논문에서는 열-전기-기계 하중 하의 지능형 복합재료 보 모델을 전산점근해석기법에 기초하여 개발하였다. 열-전기-기계 하중 하의 구조물은 지난 십년간 많은 연구가 있어왔으나, 주로 고전적 보 모델에 기반을 두어 진행되어져 왔다. 멀티피직스 환경하의 구조물은 여러 가지 하중의 조합과 이에 따른 연성효과의 고려가 필수적이다. 따라서 공학적인 가정이 없는 점근해석기법은 보다 정확한 등가 보 모델을 개발하는데 있어 기반요소가 될 수 있다. 본 연구에서는 3차원 멀티피직스 구성방정식으로부터 출발하여 점근기법을 적용 체계적으로 등가 보 모델을 유도하고 그 해석 결과를 고찰하고자 한다.

  • PDF

Strength Evaluation of a Doubler Plate of Ship Structure subjected to the Biaxial In-plane Compression (양축방향 면내 압축하중을 받는 선박 이중판의 강도 평가)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.72-85
    • /
    • 2001
  • A study for the structural strength evaluation on the doubler plate subjected to the biaxial in-plane compression has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. A1so, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et a1. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Prediction of Biaxial Strength and Fatigue Life using the Concept of Equivalent Strength (등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • A failure criterion must be considered in each failure mode and loading condition to provide easy determining strength parameters, flexibility and rational simplicity. In this study, new failure criterion was developed by introducing equivalent strength under biaxial loading of tension and torsion. The experimental results showed that the equivalent biaxial strength has a power law relation with respect to a parameter, cos($tan^{-1}R_b$). Failure strength under biaxial loadings could be predicted as a function of tensile strength, torsional strength and biaxial ratio. The scattering of experimental data could be predicted using a Weibull distribution function and the concept of equivalent biaxial strength. Also, in this study, a fatigue theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for uniaxial loading. The prediction models can be predicted a biaxial strength and fatigue life of general laminated composite naterials under multi-axial loadings.

  • PDF

Strength Analysis of a Slender Doubler Plate of Ship Structure subjected to the Longitudinal In-plane Compression (종방향 면내 압출하중을 받는 세장한 선박 이중판의 강도 해석)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.92-105
    • /
    • 2000
  • A study for the structural strength evaluation on the slender doubler plate has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate subjected to the longitudinal in-plane compression, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. Also, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et al. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Capacity Spectrum Analysis using Equivalent SDOF Method and Equivalent Damping Method for RC Wall Structure (철근콘크리트 벽체구조물에 대한 등가단자유도 방법 및 등가 감쇠비 산정방법에 따른 역량스펙트럼해석)

  • Song, Jong-Keol;Jang, Dong-Hui;Kim, Hark-Soo;Chung, Yeong-Hwa
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.169-187
    • /
    • 2008
  • Performance-based approaches as an alternative method of the existing force-based approach have gradually become recognized tools for the seismic design and evaluation. The maximum inelastic displacement response using capacity spectrum method (CSM) with elastic response spectrum is estimated from seismic response of equivalent linear system converted from nonlinear system. The purpose of this paper is to evaluate accuracy of capacity spectrum method using the equivalent SDOF methods of 4 types and the equivalent damping methods of 5 types for RC wall structure. In order to evaluate accuracy of capacity spectrum analysis, the shaking table test results for RC wall structures are compared with those by the capacity spectrum analysis. Also, the effect of bilinear capacity curves by two bilinear approximation methods for capacity spectrum analysis is compared.