• Title/Summary/Keyword: 등가 파괴변형률)

Search Result 14, Processing Time 0.028 seconds

Finite Element Simulation of Fracture Toughness Test (파괴인성시험의 유한요소 시뮬레이션)

  • Chu, Seok Jae;Liu, Conghao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.491-496
    • /
    • 2013
  • Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found.

p-Version Finite Element Analysis of Elasto-Plastic Cracked Plates Including Strain Hardening Effects (변형률 경화효과를 고려한 탄소성 균열판의 p-Version 유한요소해석)

  • 우광성;홍종현;윤영필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.537-549
    • /
    • 1999
  • 선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.

  • PDF

Influence of strain rate on the acoustic emission signal characteristics in corrosive environment (부식환경하에서 음향방출신호 특성에 미치는 변형률속도의 영향)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.12-21
    • /
    • 1995
  • The study was performed to study the effects of strain rate on acoustics emission( AE) during bulging test in corrosive environmentsynthetic sea water. The strain rates used were in the range $4 \times 10^{-6}S^{-1}$ to $1 \times 10^{-4} \times S^{-1}$ and the parameters used to evaluate AE signal characteristics were AE hit and amplitude. It can be observed that the cumulative AE hit and average amplitude during fracture process increase highly at decreasing strain rates while the equivalent fracture strain and the crack length of circumferencial direction become decrease. The peak point of AE signal characteristic parameters approach to the first half of test. When the average amplitude per unit equivalent fracture strain was above 20dB, it was definitly observed stress corrosion cracking phenomena. Additional, we knew that the AE test had the possibility to evaluate SCC susceptibility with various strain rates.

  • PDF

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Structural Safety Analysis on Crack Propagation in Compact Tension Specimen (소형 인장 시험편 내의 크랙 전파에 대한 구조 안전해석)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • In case eccentric load is applied at compact tension specimen, the propagation behavior due to existence or nonexistence of hole, numbers and positions of holes near crack is investigated in this study. Strain energy, displacement and stress happened in specimen are examined through simulation analysis. And stress intensity factor is obtained by the basis of strain energy and deformation. When defect or hole exists in structure, the possibility of fracture can be thought to be verified by using the study result.

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

Nonlinear Numerical Analysis for Shear Dominant RC Columns Subjected to Lateral Force (전단거동이 우세한 기둥의 비선형 해석에 관한 연구)

  • Kim Ick-Hyun;Sun Chang-Ho;Lee Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.467-476
    • /
    • 2004
  • Because of crack control by steel bars after cracking the material models for reinforced concrete(RC) differ from those for plain concrete(PL). The nonlinear behavior of columns subjected to lateral load was simulated with reasonable accuracy in 3D analysis by applying distinct material models for RC and PL zone subdivided properly on the section. The shear strain is confirmed to develope unstably with ununiform distribution in out-of-plane direction. And this tendency becomes stronger as the thickness of column member increases in out-of-plane direction. If this ununiformity in strain distribution is not taken into consideration the capacity and the deformability of columns in shear dominant failure are overestimated excessively in two dimensional analysis. By introducing equivalent softening model a behavior of columns can be predicted too in two dimensional analysis.

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (I) - Boiler Superheater Tube - (SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(I) - 보일러 과열기 튜브 -)

  • Baek, Seung-Se;Na, Seong-Hun;Na, Ui-Gyun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1995-2001
    • /
    • 2001
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen(10${\times}$10${\times}$0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-lMo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600$^{\circ}C$. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decreases with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation or SP-Creep rate for 2.25Cr-lMo steel is suggested. and a good agreement between experimental and calculated data has been found.