• Title/Summary/Keyword: 들기름

Search Result 244, Processing Time 0.025 seconds

Physiological Activities of Sesame, Black Sesame, Perilla and Olive Oil Extracts (참기름, 흑참기름, 들기름 및 올리브유 추출물의 생리활성)

  • Kim, Eun-Joo;Hwang, Seong-Yun;Son, Jong-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.280-286
    • /
    • 2009
  • This study investigated the physiological activities and antimicrobial effects of sesame, black sesame, perilla and olive oil extracts. Total flavonoid contents of sesame, black sesame, perilla and olive oil extracts were 2.7, 1.9, 3.0 and 1.4%, respectively, while total phenol contents were 6.5, 4.5, 4.1 and 10.1%, respectively. The electron donating abilities of sesame oil extract were markedly higher than black sesame, perilla or olive oil extract (p<0.05). The SOD-like activities of black sesame, perilla and olive oil extracts were 67.2%, 90.2% and 46.7%, respectively; in contrast, sesame oil extract did not show SOD-like activity. The order of the nitrite-scavenging abilities of sesame, black sesame, perilla and olive oil extracts was sesame> black sesame> perilla> olive oil extract (p<0.05). Olive oil extract showed strong antimicrobial activity to Bacillus cereus, Micrococcus luteus, Escherichia coli and Salmonella Enteritidis. The black sesame oil extract showed weak antimicrobial activity to Micrococcus luteus and Escherichia coli; conversely, sesame and perilla oil extracts did not show any antimicrobial activity.

해상 유출 기름 제거 시 미생물을 이용한 제거 기술의 종류와 고려하여야 할 문제점 분석

  • 장승룡
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.68-84
    • /
    • 1999
  • Biodegradation is a natural weathering process by microorganisms to decompose spilled oil or environmental contaminants. To accelerate this process, applying nutrients (fertilizer) or more microorganisms to naturally occurring microorganisms is called 'Bioremediation.' Presently, most popular response technique to spilled oil is mechanical cleanup using booms or skimmers. For the alternative to this technique, chemical dispersants, in-situ burning are used. Another promising alternative is bioremediation and it can clean oil contaminated seashore during enough time. In this paper, types of bioremediation technologies, its usage potential, and important consideration issues when applying this technique were summarized.

  • PDF

Occurrence of Organochlorine Insecticides in Vegetable Oils Produced in Korea (한국산 식물성(植物性) 기름 중 유기염소계(有機墮素系) 살충제(殺童劑)의 잔류량(殘留量))

  • Lee, Su-Rae;Kang, Soon-Young;Kim, Yong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.216-218
    • /
    • 1980
  • The appearance of organochlorine insecticides in 43 samples of refined vegetable oils including rapeseed, rice bran, sesame, perilla and corn oils produced in Korea in 1976 was investigated. Residue levels varied depending on the pesticide, oil source and production area. Gas-liquid chromatographic techniques were used to detect and quantify the presence of heptachlor, its epoxide, BHC, aldrin, endrin and DDT residues.

  • PDF

Determination of Sesame oil Adulterated with other Vegetable oils by Spectrophotometric Method (자외선 흡수특성을 이용한 참기름의 이종기름 혼입판별에 관하여)

  • 이영근
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.151-155
    • /
    • 1993
  • Since there have been no method which can applicable to the screening of commercial sesame oil adulterated with other vegetable oils, the present investigation was carried out particularily focusing on the the pattern of IN absorption of sesame oil and other vegetable oils. For this, a variety of oil samples prepared by the conventional method from sesame seeds, perilla seeds, com, soybean, and rice bran were analyzed by IN spectrophotometer. IN spectra of sesame oil and oil of unheated sesame seeds showed absorption peaks at 215, 230 and 290 nm. While UV spectra of com oil, perilla oil and soybean oil all showed absorption peaks at 215, 230 and 280 nm, that of rice bran oill showed peaks at 215, 290 320 nm. When sesame oil was mixed with com oil, perilla oil or soybean oil, respectively, from which the absorbance of peaks at 290 nm were lower than pure sesame oil. The peak at 320 nm which was typical absorption peak of rice bran oil was still observed in the spectnun of mixture of sesame oil with rice bran oil.

  • PDF

Review on Oil/Water Separation Membrane Technology (기름/물 분리막 기술에 대한 총설)

  • Lee, Byunghee;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.359-372
    • /
    • 2020
  • Compared to other oil/water separation methods, oil/water separation membranes have low energy costs and higher performance levels. Superhydrophilicity and underwater superoleophobicity are factors that are most vital in developing effective oil/water separation membrane. In addition, antifouling property and biodegradability are also factors that have to be considered in developing the membranes. In this review, studies which have enhanced the oil/water separation efficiency by modifying the chemistry and morphology of the surface of the membrane are discussed.

Physicochemical and Sensory Characteristics of Snack Using Cham chwi(Aster scaber) (참취를 이용한 스낵제품의 이화학적 및 관능적 특성)

  • Lee, Jong-Mee;Chung, Hye-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • This study was to investigate the physicochemical and sensory characteristics of snack with various amounts Cham chwi and oil. This result was used to determine the optimum condition of adding levels of Cham chwi and oil. Flavor, crispness, greasiness, oil absorption, expansion rate were selected as the physicochemical and sensory characteristics to determine the optimum conditions of the amount of Cham chwi and oil. The predicted values were obtained by the regression method of RSM(response surface methodology). Conditions were standardized with maximum range of expansion rate when expected value of crispness was more than five and expected value of greasiness was less five. The optimum conditions of Cham chwi snack was established as the 8.6% of Cham chwi and 7.6% of oil.

  • PDF

Chemical Changes of the Deep Fat Frying Oils Used Commercially (일반시장에서 튀김식품에 사용된 기름의 화학적 변화)

  • Joo, Kwang-Jee;Ha, Gy-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.3
    • /
    • pp.247-254
    • /
    • 1989
  • In deep-fat frying, the fats and oils are used over and over again, and moisture and air are mixed in to the hot oil. Many reports related to these fats and oils have been established that thermal and oxidative decomposition products and polymers formed under the conditions of deep fat frying are harmful to health. This work was carried out with 3 domestic frying oils and 6 used oils commercially, and that there were difficulties in finding a good definition between fresh oil and used oil with adding unheated oil. As starting materials, commercially used soybean oil and rapeseed oil already passed over induction period in the lipids oxidation standard. From the qualitative point of view, they were inferior to domestic frying oils. Free fatty acid and peroxide value of heated oils were increased gradually by the time pass whereas iodine value were decreased. After adding unheated oil to the heated oil, these values were restored to that of initial levels. On the other hand, content of polar components in the heated oil were directly related to the heating time. This result showed that polar compounds may be a clear indicator of used oils. Fatty acid composition in the used oils, unsaturated fatty acids such as linoleic and linolenic acid decreased while saturated fatty acid content increased with heating.

  • PDF

Oxidative Stability of Perilla Blended Oils in Mayonnaise Preparation (마요네즈 제조시 들기름 혼합유의 산화안정성)

  • Kim, Jae-Wook;Nishizawa, Yukio;Cha, Ga-Seong;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.568-571
    • /
    • 1991
  • This study was designed to select the most stable oil among vegetable oils for mayonnaise preparation on lipid oxidation when blended with perilla oil. Oxidative stabilities of perilla oil, soybean oil, rapeseed oil, corn oil, sunflower oil and perilla blended oils (blended perilla oil with other vegetable oil in a equal weight rate) were tested. Among the perilla blended oils, perilla blended soybean oil was the most effective on oxidative stability. This may be concerned with the fact that the content of natural antioxidant, tocopherol, is higher than that of other oils. Mayonnaise was prepared by using both perilla oil and perilla blended soybean oil. Variations of POV and tocopherol content of mayonnaise during storage at $37^{\circ}C$ were compared. The changes in POV and tocopherol content in the mayonnaise of perilla blended soybean oil were less than those of perilla oil. This result suggested that the usage of perilla blended soybean oil instead of perilla oil itself is possible in the manufacturing of mayonnaise.

  • PDF

Analysis of Seed Oil Fatty Acids and Their Effect on Lipid Accumulation and Leptin Secretion in 3T3-L1 Adipocytes (헥산 추출 종실유의 지방산 분석 및 3T3-L1 지방세포의 지방 축적과 랩틴 분비에 미치는 영향 연구)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Lee, Jeong Il;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • In this study, we evaluated the fatty acid composition and physiological activities of oils extracted from eight types of seeds, pepper (Capsicum annuum L.), green tea (Camellia sinensis L.), perilla (Perilla frutescens var. japonica Hara), peanut (Arachis hypogaea L.), cotton (Gossypium indicum LAM.), sesame (Sesamum indicum L.), walnut (Juglans regia L.), and safflower (Carthamus tinctorius L.). The composition and quality analysis showed that the oils were potentially suitable for foo-grade applications. The composition analysis showed that the oils were mostly composed of unsaturated fatty acids including linoleic acid and oleic acid. In 3T3-L1 adipocytes, green pepper, perilla, and peanut seed oils inhibited lipid accumulation, and green pepper, perilla, peanut, sesame, walnut, and safflower seed oils induced leptin secretion. These results show that the inhibitory effect of edible seed oils on lipid accumulation, and induction of leptin secretion may be useful for obesity management.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.