• Title/Summary/Keyword: 드릴링

Search Result 182, Processing Time 0.028 seconds

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

A Study on the Computational Structural Analysis Using the Field Test Data of Onshore Drilling Mud Motor (육상시추용 드릴링 추진체의 실증시험 데이터를 활용한 전산구조해석에 관한 연구)

  • Park, Sung-Gyu;Kim, Seung-Chan;Kwon, Seong-Yong;Shin, Chul-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.603-609
    • /
    • 2022
  • Bottom hole assembly(BHA) is a key component of the drilling system, consisting of various components and tools(including the drill bit and mud motor) which operate at the bottom of the wellbore and physically drill the rock. This paper investigates the dynamic characteristics of the mud motor which is a drilling propulsion tool. And computational structural analysis is performed to calculate the von-Mises stress and the safety factor of components constituting the mud motor. In this process, the field test data of onshore drilling are used for analysis.

A study on effects of the fiber orientation and point angle on drilling characteristics of carbon fiber epoxy composite materials (탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 섬유 배열방향과 선단각의 영향에 관한 연구)

  • Kim, Hyeong C.;Lee, Woo Y.;Namgung, Suk.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 1997
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting conditions in order to minimize the problems occurred in the material while being drilled. It has been confirmed by a frequency analysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the ortating drill and the stacking angle of the carbon fiber. By the drilling experiment with several drills having different point angles, the drilling char- acteristics, which show the relations between the change in the point angle and cutting force or external surface condition, were analyzed.

  • PDF

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

A study on simplified procedure of enhanced designed implant drill (개선된 드릴 디자인을 적용한 간소화된 드릴링 과정에 관한 연구)

  • Yoon, Ji-Hoon;Jeon, Gye Rok;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.368-376
    • /
    • 2015
  • Purpose : The objective of this research was to develop a more simplified drilling procedure with an enhanced implant drill. Materials and Methods : The drill enhanced design factors enabled implantation of Dia. 5.0mm fixture with only 2 times drilling which is more simplified drilling procedure. The enhanced drill was designed with 2 flutes, 2-phase or 3-phase formed drill tip and 25 degrees of helix angle. The proposed drilling procedure (2 times) was compared with a general drilling process (4 times) in terms of temperature changes, cutting time and ISQ value. Results : The simplified drilling procedure indicated less heat than a conventional drilling procedure (p<0.05). The enhanced drill showed significantly shorter drilling time than a conventional drill (p<0.05). On the other hand, higher insertion torque and ISQ value were observed on the the suggested drilling procedure than the conventional drilling procedure (p<0.05). Conclusion : A simplified drilling procedure with the newly designed drill could provide higher effectiveness and safety of dental implant operations under properly controlled external conditions, such as irrigation and RPM of drilling.

The Geometric Machining Mechanism of Ultrasonic Drilling (초음파 드릴링의 기하학적 가공 메커니즘 분석)

  • Jang Sung-Hoon;Lee Seok-Woo;Choi Hon-Zong;Lee Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.76-83
    • /
    • 2005
  • With the acceleration of the miniaturization of products, especially in recent years, machining technologies for these products is in need of improvement. Conventional technologies have limitations in realizing the miniaturization due to the downsizing effects of the tools, which lack sufficient cutting stiffness during machining. The application of ultrasonic vibration is one of the most useful solutions in dealing with the problem. This study focused on the difference of ultrasonic drilling from conventional one in geometrical machining mechanism and the corresponding machining results. In detailed, some mathematical equations for drill cutting edge paths during drilling were extracted and new method to find uncut chip thickness from above equations was suggested. The experiments were carried out through the comparison between the results (disposed chips and internal surface states of holes) of conventional drilling and those of ultrasonic drilling. It was determined that the geometrical paths of cutting edges and analyzed uncut chip thickness agree with the appearance of disposed chips. Furthermore, the change in tool path by ultrasonic vibration resulted in the improvement of surface statement.

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Machining Characteristics of Tool Steels Manufactured by Electro Slag Casting Process (ESC 공정으로 제작된 금형강의 가공특성연구)

  • Kim, Jung-Woon;Kim, Bong-Joon;Lee, Deug-Woo;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1120-1126
    • /
    • 2002
  • Machining characteristics of tool steels manufactured by electro slag casting process has been investigated in this study. For the estimation of machinability, turning and drilling tests are carried out. The chip shapes at various velocities are investigated for the comparison of turning workabilities of tool steels because the chip shapes reflect characteristics of cutting resistance. In case of drilling test, feed motor currents measured by a hall sensor are used as a measure for the drilling resistance. The machining characteristics of the tool steels are strongly correlated with tensile properties, such as tensile strength, hardness, and ductility. In case of turning workability, it was found to be favoured by the higher tensile strength, while the opposite is true far the drilling workability. The electro-slag casted materials show better turning workability in the viewpoint of chip shapes and, the quenching-tempered electro-slag casted material has relatively better drilling machinability than that of the annealed one.

Parametric Study of Picosecond Laser Hole Drilling for TSV (피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구)

  • Shin, Dong-Sig;Suh, Jeong;Kim, Jeng-O
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF