• Title/Summary/Keyword: 드라이브 액슬

Search Result 4, Processing Time 0.017 seconds

Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift (지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구)

  • Jun-Young Kim;Yeong Jun Yu;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

experimental Investigation of Noise and Vibration Phenomena of a Heavy-duty Truck at High-Speed Driving (대형트럭의 고속 주행시 진동소음 현상에 관한 실험적 연구)

  • Lee, Yang-Sup;Han, Moon-Sik;Cho, Hang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.77-82
    • /
    • 1999
  • 대형 화물트럭의 차실 내에 높은 수준의 차바닥 진동을 수반한 높은 소음이 발생하였다. 측정 및 분석결과 문제의 진동 소음은 추진축의 회전 1차 및 2차 성분으로 나타났다. 진동 전달경로상의 구성계 및 구성요소들에 대해 모드해석과 실차 주행 모드 해석시험을 실시한 결과 드라이브라인 및 프레임의 공진주파수가 문제가 되는 소음진동 주파수와 거의 일치하였으며, 또한 캡의 실내음향 공진 모드가 문제되는 주파수에서 존재하였다. 실험결과에 따라 액슬과 액슬간의 축의 장착각도를 변경하여 가진력을 줄이고, 비틀림 동흡진기를 추진축에 장착하여 드라이브라인계 공진을 제어함으로써 문제의 시내진동소음을 현저히 개선하였다.

  • PDF

A Research on the Reverse Engineering and Verification for the Development of An Independent-Suspension Type Axle Through-Drive on Heavy Duty Special Vehicles (대형 특수차량용 독립현가형 액슬 스루드라이버 개발을 위한 역설계 및 설계검증 적용 연구)

  • Lee, Sung-Geun;Park, Jeong-Hyeon;Pyoun, Young-Sik;Park, Byeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2210-2220
    • /
    • 2009
  • Independent-suspension type axles for heavy duty special vehicles are usually produced by only a few specialized companies. The special techniques, such as designing, producing, testing techniques has been unveiled. The test of durability with the vehicle in which is installed a prototype taking several years is required for setting the designing parameters. In this research, through-drive the core-component of the independent-suspension type axle has been tested with the reverse engineering and the testing methods for the confirmation of the accomplishment in the development goal has been suggested. Also the prototype is developed from designing and testing the design with the CAD and CAE tools. As a result, the process and testing methods studied in this research are useful in the development of power train.

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.