• Title/Summary/Keyword: 듀얼 에너지CT

Search Result 7, Processing Time 0.022 seconds

Usefulness of Dual Energy CT to Improve Image Quality Degradation due to Lens Shielding (수정체 차페로 기인한 화질저하 개선을 위한 듀얼 에너지 CT의 유용성)

  • Yoon, Joon;Kim, Hyeonju
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.969-977
    • /
    • 2019
  • Applying the bismuth shield used to reduce the radiation exposure, image quality may be reduced due to beam hardening caused by the shield during CT scan. Therefore, we tried to find out the energy range that can reduce image degradation by applying GSI mode of G company's dual energy CT and examine the possibility through experiment. As a result, after bismuth shielding, 118 ± 10.6 HU and 50.1 ± 14.6 HU at 50 keV after dual-energy CT scan were the most similar to the CT value before image deterioration(p> 0.05). It was measured 176.6 ± 7.1 and 138.3 ± 1.1 at 50 keV(p> 0.05). Experiments showed that the use of the shield during CT inspection inevitably degrades the image quality, but experiments show that the GSI function of the dual energy CT can maintain the image quality even when the shield is used. If the various shields are secured after the evaluation using the dual energy CT, it is expected to overcome the disadvantages of poor image quality caused by the use of the radiation shield for reducing the exposure, which is the biggest disadvantage of the CT scan.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

Clinical Apply of Dual Energy CT (kVp switching) : A Novel Approach for MAR(Metal Artifact Reduction) Method (듀얼에너지 CT(kvp switching)의 임상 적용: MAR(Metal Artifact Reduction) 알고리즘의 적용)

  • Kim, Myeong-Seong;Jeong, Jong-Seong;Kim, Myeong-Goo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.79-85
    • /
    • 2011
  • OThe purpose of this article was to measure and compare the value of the metal artifact reduction (MAR) algorithm by Dual energy(kVp switching) CT (Computed Tomography) for non using MAR and we introduced new variable Dual energy CT applications through a clinical scan. The used equipment was GE Discovery 750HD with Dual-Energy system(kVp switching). CT scan was performed on the neck and abdomen area subject for patients. Studies were from Dec 20 2010 to Feb 10 2011 and included 25 subject patients with prosthesis. We were measured the HU (Hounsfield Unit) and noise value at metal artifact appear(focal loss of signal and white streak artifact area) according to the using MAR algorithm. Statistical analyses were performed using the paired sample t-test. In patient subject case, the statistical difference of showing HU was p=0.01 and p=0.04 respectively. At maximum black hole artifact area and white streak artifact area according to the using MAR algorithm. However noise was p=0.05 and p=0.04 respectively; and not the affected black hole and white streak artifact area. Dual Energy CT with the MAR algorithm technique is useful reduce metal artifacts and could improve the diagnostic value in the diagnostic image evaluation of metallic implants area.

A Study of the CT MAR using Single-Source and Dual-Source Devices: Practical Comparison using Animal Phantom Fabrication (단일 선원 장치와 이중 선원 장치 비교를 이용한 전산화단층촬영 금속인공물 감소에 대한 연구: 동물팬텀 제작을 이용한 실측적인 비교)

  • Goo, EunHoe
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.1003-1011
    • /
    • 2020
  • This study aims to compare and evaluate the image differences between single and dual sources in applying a technique to reduce metal artifacts using dual energy CT. Discovery CT 256 (GE, USA) as a single source device and Somatom Definition Flash (Siemens Health Care, Forchheim, Germany) as a dual source device. The self-made phantom (pigs with medical titanium screws inserted) was quantitative and qualitatively evaluated under the same conditions by varying the dose under the same conditions using a dual energy CT. The evaluation method was compared by measuring SNR for metal artifacts (scattering, stripe) generated by metal inserts, divided around bones and around tissues. There was a difference in images in the method of reducing metal artifacts between single-source and dual-source devices. In a single source device, the linearized prosthesis by metal implantation showed a greater decrease than the image obtained from a double source device, and the surrounding tissue was well observed without interference from the artifact. In dual-source devices, scattering and stripe artifacts caused by metal inserts decreased more than on a single source device, and signals from adjacent tissues surrounding the metal implant were well observed without diminishing. If the examination is conducted separately between single source and dual source devices depending on whether the area to which the patient is intended to be viewed during the examination is adjacent to the metal insert or the total tissue surrounding the metal insert, it is believed that diagnostic helpful images can be obtained.

Analysis of the artifact reduction rate for the types of medical metals in CT with MAR algorithm (CT의 MAR알고리즘 적용 시 의료용 금속 물질별 인공물 감소율 분석)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.655-662
    • /
    • 2016
  • We investigated on the usefulness of MAR algorithm by making a comparison of the CT value between before and after applying the MAR algorithm in dual energy CT, using the various kinds of medical metals, causing the artifact to lead to the low image quality. As a result, the artifact was reduced in most cases (P<0.05); in particular, the artifact was highly reduced (P<0.05) using high density material, like alloy-stainless (reduced by 78.1%) and platinum, for example GDC coil (reduced by 76.1%). The effect of decreasing the Black hole artifact was outstanding in both the alloy-stainless and alloy-titanium (P<0.05). However, in case of GDC coil-a type platinum, white streak artifact was reduced effectively (P<0.05). Therefore, in case of patients who have medical metals inserted, we think that high-quality image information can be provided by decreasing the artifact caused by high density material through MAR algorithm in dual energy CT.

Usefulness of DECT Application for Compensation of Image Contrast Difference According to CT Contrast Agent Density (CT 조영제 농도에 따른 영상 대조도 차 보상을 위한 DECT 적용의 유용성)

  • Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.417-422
    • /
    • 2023
  • In this study, normal saline was diluted with the contrast medium at a certain ratio for the purpose of reducing the image quality poor and side effects caused by the contrast medium during CT examination. At this time, by finding the energy level of DECT that can compensate for the decrease in contrast of the image according to the degree of dilution, the usefulness of applying DECT for compensating the difference in image contrast was investigated through comparative analysis by applying SNR, CNR, and SSIM. As a result, when a dilution ratio of 4 (contrast medium): 6 (normal saline) and the energy level of DECT of 65 keV were applied, the contrast difference was the most similar to that when using the undiluted contrast medium. At this time, SNR was 813.71 ± 37.6, CNR was the highest at 921.87 ± 17.1, and SSIM index was measured at 0.851, which is the most similar to 1. The results of this study are meaningful in providing basic information for finding the appropriate dilution rate and energy level for each examination site through future clinical studies. It is believed that it can be reduced.