상이한 자연현상으로 발생된 자료들은 때때로 통계적으로 다른 특성을 가지는 경우가 있다. 이런 자료들은 다른 두 개 이상의 모집단에서 자료가 발생한 것으로 가정할 수 가 있다. 기존에 널리 사용되어온 분포형 모형의 경우 단일한 모집단으로부터 자료가 발생한다는 가정하에서 개발된 모형들로 위에서 언급한 자료들을 적절히 모의할 수 없다. 이런 상이한 모집단에서 발생된 자료를 모형화 하기 위해서 혼합분포모형(mixture distribution)이 개발되었다. 홍수나 가뭄 등과 같은 극치 사상의 경우 다양한 자연현상들로부터 발생하기에 혼합분포모형을 적용할 경우 보다 정확한 모의가 가능하다. 혼합분포모형은 두 개 이상의 비혼합분포모형들을 가중합하여 만들어진다. 혼합 분포모형의 형태로 인하여 기존의 분포형 모형의 매개변수 추정 모형으로 널리 사용되던 최우도법 (maximum likelihood method), 모멘트법(method of moment), 확률가중모멘트법 (probability weighted moment method) 등을 이용하여 혼합분포모형의 매개변수를 추정하는 것이 용이 하지 않다. 혼합분포모형의 매개변수 추정 방법으로는 Expectation-Maximization (EM) 알고리즘, Meta-Heuristic Maximum Likelihood (MHML) 방법, Markov Chain Monte Carlo (MCMC) 방법 등이 적용되고 있다. 현재까지 수자원 분야에서 사용되는 극치 자료를 혼합분포모형을 이용하여 모의할 때 매개변수 추정방법에 따른 특성에 대한 연구가 진행되지 않았다. 본 연구에서는 우리나라 연최대강우량 자료를 이용하여 혼합분포모형의 매개변수 추정방법 (EM 알고리즘, MHML 방법, MCMC 방법) 들의 특성들을 비교 분석하였다. 혼합분포모형으로는 Gumbel-Gumbel 혼합분포 모형을 적용하였다. 본 연구의 결과는 향후 혼합분포모형을 이용한 연구에 좋은 기초자료로 사용될 수 있을 것으로 판단된다.
다변량분산분석이나 판별분석 등에 있어서 검정의 대상이 되는 공분산행렬의 동일성에 대한 붓스트랩방법의 활용을 살펴보았다. 두 모집단의 공분산행렬을 $\Sigma_1, \Sigma_2^$라 하면, 가설 H : $\Sigma_1 = \Sigma_2$은 불변성의 관점에서 $\Sigma = \Sigma_1 \Sigma_2^{-1}$의 고유값들이 모두 1 이라는 것과 동등하다. 본 연구에서는 (1) $\Sigma = \Sigma_1 \Sigma_2^{-1}$의 표본고유값들에 대한 편의를 붓스트랩에 의해 정정하였으며, (2) 이들의 표본분포를 붓스트랩분포로 추정하여 검정에 활용하였으며, (3) 합동붓스트랩에 의해 바플렛의 수정우도비 검정통계량의 분포를 근사하였다.
The main purpose of this study is to investigate the effect of departures from normality and equal variance on the two-sample test when the variances are unknown. We have found that type I error brought about a little bit change which is ignorable in relation to kurtosis. But the change of type I error was mainly based on the skewness of the parent population. In introductory statistics classes where data analysis includes techniques for detecting skewness of two populations, we recommend the two-sample t-test when maximal skewness of two populations is smalter than the value 4 when the variances seem equal. Furthermore, our simulations reveal that the two-sample t-test appears somewhat more robust than that of z-test if the assumption of equal variance is satisfied. In the case of unequal variance, the two-sample t-test appears somewhat more robust provided the t-statistic using Satterthwaite's approximate degrees of freedom.
2차원 분할표 형태의 자료에 대해 두 범주형 변수들간의 독립성을 검정함에 있어, 만일 두 변수 각각의 모분포가 이미 완전히 알려진 경우라면 이 알려진 정보를 충족할 수 있도록 분할표 자료를 보정한 후 보정된 분할표 자료에 대해 전통적인 카이제곱 검정법을 적용하는 것이 더 타당함을 논증한다 그리고 이에 근거한 제약상황 카이제곱 독립성 검정법을 유도하고 모의실험을 통해 전통적인 무보정 카이제곱 검정법과 비교한다.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.477-485
/
2013
임상시험 등 다양한 분야를 중심으로 제1종 오류확률과 검정력을 함께 고려하여 표본크기를 결정하는 경우가 늘어나고 있다. 이런 경향은 표본을 많이 얻을 수 없는 연구에서 더욱 뚜렷하다. 본 연구에서는 독립인 두 개의 정규모집단에서 두 그룹의 분산과 표본수가 같지 않을 때의 모평균 차이에 대한 검정에서 제1종 오류와 제2종 오류를 모두 고려한 경우 두 그룹의 필요한 표본크기를 결정하는 과정을 살펴보고 이를 웹사이트를 통해 구현하였다. 또한 주어진 표본크기와 유의수준에 의한 검정력 계산도 함께 구현하였다.
본 논문에서는 단일 영상에 포함된 광원의 분광분포를 추정하는 광원추정 알고리즘을 제안한다. 제안된 광원 추정 방법은 두 단계로 이루어져 있다. 첫째, 변형된 회색계 가정(modified gray world assumption)을 이용하여 부분적으로 광원의 영향을 배제한 후 밝으면서도 무채색에 가까운 최대 무채색 영역을 찾아 그 영역의 표면 분광 반사율을 구한다. 이때 최대 무채색 영역의 표면 분광 반사율은 1269개의 Munsell 색 표본에 대하여 주성분 분석 방법을 이용하여 추정하였다. 둘째, 주어진 Munsell 색 표본과 대표 광원의 조합으로 반사광의 모집단을 만들었다. 다음 최대 무채색 영역의 각 화소와 반사광 모집단과의 색차를 비교하여 최대 무채색 영역과 색차가 가장 적은 반사광 표본을 선택하고 이를 최대 무채색 영역에 대한 반사광의 분광분포로 정의한다. 최종적으로 최저 무채색 영역의 반사광 분광분포를 해당하는 표면 분광반사율로 나누어줌으로써 영상에 포함된 광원의 분광분포를 추정한다. 제안한 알고리듬의 성능을 평가하기 위하여 유색 광원에 조명된 영상에 대한 광원 추정 실험을 하였으며 기존의 방법과 추정된 광원의 분광 분포 비교 및 색차 비교를 통해 그 타당성을 검증하였다.
본 연구는 동일한 병렬기계에서의 총 납기지연의 합을 최소화하는 일정계획 문제에 대해 다룬다. 이 문제는 Lenstra et al. (1977)에 의해 NP-hard로 알려져 있으며, 작업의 수와 기계의 수가 큰 현실적 문제에 대해 적절한 시간 내에 최적해를 찾는다는 것은 사실상 불가능하다. 따라서 본 연구에서는 이 문제를 해결하기 위하여 혼합형 유전 알고리즘(hybrid genetic algorithm)을 제안한다. 혼합형 유전 알고리즘에서는 임의로 발생시킨 모집단에 대해 먼저 유전 알고리즘(genetic algorithm)이 세대를 진행하며 해를 개선한다. 유전 알고리즘이 일정기간동안 더 이상 해를 개선하지 못하면, 부분탐색 알고리즘(local-search algorithm))이 유전 알고리즘의 모집단의 개체들에 대해 해의 개선을 시도한다. 즉, 부분 탐색 알고리즘은 모집단 속의 각각의 개체를 초기해로 하여 모집단 내의 개체 수만큼의 부분 최적해(local optimum)들을 구한다. 이렇게 구한 부분 최적해들로 새로운 모집단을 구성하면 다시 유전 알고리즘이 진행된다. 이 과정을 종료조건에 이를 때까지 번갈아가며 반복 수행한다. 본 연구에서 제안한 유전 알고리즘에서는 Bean(1994)이 제안한 Random key 방법으로 개체를 표현하였으며 Park(2000)이 제안한 3가지 교차 연산자들을 채용하였다. 부분탐색 알고리즘을 위해서는 쌍대교환(pair-wise interchange) 방법을 통해 이웃해를 생성하였다. 선행실험을 통하여 제안한 혼합형 유전알고리즘에서 사용하는 다양한 모수(parameter)값들을 최적화하였으며 알고리즘의 성능을 비교하기 위하여 기존의 알고리즘과도 비교실험을 수행하였다.복적인 지표가 채택되는 경우를 포함하고 있다. 셋째는 추상적이며 측정이 어려운 지표를 채택하고 있는 경우이다. 여기에는 지표에 대한 정확한 정의가 이루어져 있지 않아 피 평가자가 불필요하거나 과다한 평가 자료를 준비해야 하거나 평가자로 하여금 평가 시 혼돈을 유발할 가능성이 있거나, 또는 상위개념의 평가항목과 하위개념의 평가항목이 혼재되어 구분이 모호한 경우를 포함하고 있다. 바탕으로 '생태적 합리성'이라는 체계적인 지식교육을 거쳐서, '환경정의' 의식의 제고로 이어가고, 굵직한 '환경갈등'의 상황에서 뚜렷한 정치적 태도와 실천을 할 수 있는 '생태적 인간상'의 육성으로 나아갈 수 있어야 한다는 것이 필자의 생각이다. 이를 위해서는 어찌되었건 체험학습 영역에서는 환경현안에 대한 사회적 실천을 '교육 소재'로 삼을 수 있어야 하며, 교과학습 영역에서는 한국사회의 환경현안에 대한 정치경제적 접근을 외면하지 말고 교과서 저작의 소재로 삼을 수 있어야 하며, 이는 '환경관리주의'와 '녹색소비'에 머물러 있는 '환경 지식교육'과 실천을 한단계 진전시키는 작업으로 이어질 것이다. 이후 10년의 환경교육은 바로 '생태적 합리성'과 '환경정의'라는 두 '화두'에 터하여 세워져야 한다.배액에서 약해를 보였으나, 25% 야자지방산의 경우 50 ${\sim}$ 100배액 어디에서도 액해를 보이지 않았다. 별도로 적용한 시험에서, 토마토의 경우에도 25% 야자지방산 비누 50 ${\sim}$ 100배액 모두 약해를 발생하지 않았으나, 오이에서는 25% 야자지방산 비누 100배액에도 약해를 나타내었다. 12. 이상의 결과, 천연지방산을 이용하여 유기농업에 허용되는 각종의 살충비누를 제조할 수 있었으
본 논문에서는 사회적으로나 개인적으로 매우 민감한 조사에서 조사하고자 하는 모집단이 여러 개의 층으로 구성되어 있고, 각 층이 양적인 속성으로 되어 있는 경우에 Himmelfarb-Edgell의 가법 모형과 Gjestvang-Singh의 가법 모형에 단순임의추출법 대신에 층화추출법을 적용한 층화 가법 양적속성 확률화응답모형을 제안하였다. 제안한 두 모형으로부터 각 층의 양적속성에 대한 모평균의 추정뿐만 아니라 모집단 전체 모평균에 대한 추정을 할 수 있는 이론적 체계를 마련하였다. 그리고 제안한 두 모형에서 비례배분과 최적배분 문제를 다루었으며, 각 배분법에 따른 분산식을 도출하였다. 마지막으로 두 층화 가법 양적속성 확률화응답모형들 간의 효율성을 비교해 본 결과 Gjestvang-Singh의 층화 가법 모형이 Himmelfarb-Edgell의 층화 가법 모형보다 효율적으로 나타났고, 특히 hh값이 작을수록 즉, 제시한 모형의 특성이 직접질문에 가까워질수록 Gjestvang-Singh의 층화 가법 모형의 효율성이 커짐을 알 수 있었다.
회귀분석은 변수들간의 관계를 파악하는데 유용하게 사용된다. 여러개의 모집단을 비교할 때, 여러 모집단이 갖는 각각의 회귀직선의 기울기가 같은지 검정하는 것이 필요할 때가 있다. 본 논문에서는 순차기울기를 추정한 후 ANOVA의 F-검정법과 Kruskal-Wallis (1952)검정법을 이용한 방법을 각각 제안하였다. 또한, 몬테카를로 모의시험 연구를 통해 본 논문에서 제안한 두 가지 방법과 Park과 Kim (2009)이 제안한 기존 방법의 검정력을 비교하였다.
본 논문은 크론바흐 알파 신뢰계수의 유의성 검정에서 이상치가 검정력에 미치는 영향을 연구한 것이다. 표본 크기, 문항들의 수, 이상치의 수, 모집단의 크론바흐 알파 레벨의 네 개의 변수들에 변화를 주었다. 데이터 시물에이션을 위해 다변량 정규분포를 사용했고 균일분포로부터 이상치를 추출하여 사용했다. 크론바흐 알파 신뢰도의 유의성 검정을 위해 모수적 검정(F 검정)과 퍼뮤테이션 검정을 사용하였다. 결과적으로 퍼뮤테이션 검정의 검정력은 F검정의 검정력 보다 크거나 같았고, 두 검정의 검정력은 모두 이상치의 수가 많아질수록 감소하였으며 이러한 이상치의 영향은 모집단의 알파 레벨이 증가할수록 크게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.