두 모집단에서 임의로 관측중단도니 두 표본을 얻었을 때, 두 모집단의 분포가 같다는 가설을 검정하기 위한 카이제곱 검정방법이 제안되었다. 여기서 제안된 통계량은 대립가설이 두 모집단의 분포가 같지 않다는 양측가설일 때 쓰일 수 있다. 귀무가설이 사실일 때 제안된 통계량의 극한분포는 카이제곱 분포가 된다. 두 가지 형태의 카이제곱 검정통계량이 제안되었는데, 하나는 product-limit 추정치로부터 얻은 관측된 칸(cell) 확률의 차이들의 벡터의 이차형식으로 표현된 것이고, 다른 하나는 간단한 합의 모양으로 표현된 것이다. 두 형태의 검정통계량을 사용하여 암치료를 위한 화학요법 실험으로부터 얻은 자료를 분석하여 보았다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.249-265
/
1995
본 논문에서는 확률분포가 알려져 있지 않은 두 모집단 중 어느 하나로 새로운 관측치를 분류할 때 오분류확률이 분석자에 의해 사전에 정해진 수준에 부합할 수 있도록 커널 판별함수의 임계치를 결정하였다. 정해진 오분류확률을 만족시키기 위한 판별함수의 임계치는 붓스트랩(bootstrap)기법을 판별 함수에 적용시켜 계산된다. 본 논문에서 제시도된 방법은 모집단에 대한 모수적 가정이 없으므로 어느 분포에도 적용가능하며, 모집단이 정규분포, 대수정규분포, 이산형과 연속형 변수가 혼합된 분포의 경우 모의실험을 통하여 그 성능에 대한 검증을 하였다.
공통분산을 갖는 두 모집단에서 얻은 두 독립표본 자료로부터 공통분산을 추정하거나, 한 모집단에서 얻는 두 자료의 혼합자료로부터 모분산을 추정할때 각 표본분산의 가중평균값인 합동추정량(pooled estimator)을 주로 사용한다. 본 논문에서는 동일한 모집단에서 얻은 혼합자료의 표본분산 식을 각 자료의 평균과 분산만 이용하여 구한 후 합동추정량과 비교한다.
두 개의 정규 모집단의 평균이 같은가를 검증할 때 두 개의 신뢰구간이 겹치는 지를 시각적으로 판단하여 결정하는 방법은 매우 직관적이면서도 사용하기 쉽다. 그러나 신뢰구간이 겹칠 때도 두 집단의 평균은 통계적으로 유의하게 다를 수 있으므로 가설검증 결과와 다를 수 있다. 평균 차에 대한 신뢰구간을 각 평균의 신뢰구간으로 변환한 후에 두 신뢰구간이 겹치는지 여부를 시각적으로 판단하여 가설검증을 할 수 있는 방법을 제안한다. 또한 이 방법은 분산이 같은 k개의 정규 모집단의 평균을 비교할 경우에도 사용할 수 있음을 보인다.
본 연구에서는 부트스트랩(Bootstrap) 기법을 이용하여 측우기 강우량 관측계열(CWK)과 근대우량계 강우량 관측계열(MRG)에 대해 동질성 분석을 실시하였다. 서로다른 두 자료계열에 대한 전통적인 통계적 동질성 검정 방법은 모집단의 분포형을 알고 있어야 검정결과가 유효하였기 때문에 모집단의 분포가 복잡한 기상자료들은 이러한 전통적 방법을 사용하여 동질성을 파악하는 것이 매우 어려웠고 결과로 제시된 통계적 유의성에 대해서도 의심의 여지가 있었다. 이러한 이유로 본 논문에서는 모집단을 가정하지 않아도 되는 비모수적 모의 방법인 부트스트랩 기법을 이용하여 두 자료계열간의 동질성 검정을 실시하였다. 분석 결과 M20의 CWK와 MRG는 미소한 기후의 경년변화 (Trend)의 영향을 제외하면 동질성을 가진 자료로 볼 수 있었으나, 갈수기의 경우는 월강우량의 크기에 변화가 있으며 호우기의 경우는 일강우량의 크기 및 호우의 형태에 변화가 있는 것으로 나타났다.
본 연구에서는 부트스트랩(Bootstrap) 기법을 이용하여 측우기 강우량 관측계열(CWK)과 근대우량계 강우량 관측 계열(MRG)에 대해 동질성 분석을 실시하였다. 서로 다른 두 자료계열에 대한 전통적인 통계적 동질성 검정 방법은 모집단의 분포형을 알고 있어야 검정결과가 유효하였기 때문에 모집단의 분포가 복잡한 기상자료들은 이러한 전통적 방법을 사용하여 동질성을 파악하는 것이 매우 어려웠고 결과로 제시된 통계적 유의성에 대해서도 의심의 여지가 있었다. 이러한 이유로 본 논문에서는 모집단을 가정하지 않아도 되는 비모수적 모의 방법인 부트스트랩 기법을 이용하여 모집단을 직접 추정한 후 경험누가확률분포를 산정하여 두 자료계열간 통계적 동질성 검정을 실시하였다. 분석 결과 CWK와 MRG는 미소한 기후의 경년변화(trend)의 영향을 제외하면 동질성을 가진 자료로 볼 수 있었다.
Journal of the Korean Data and Information Science Society
/
제20권6호
/
pp.1103-1118
/
2009
유한모집단의 평균 또는 합계를 추정하고자 하는 경우 모집단 단위들의 배열순서는 중요한 의미를 갖는다. 본 논문에서는 표집률의 역수가 짝수이고 표본 크기가 홀수인 경우 선형추세를 갖는 모집단의 평균 또는 합계를 추정하기 위한 두 가지의 방법을 제시하였다. 첫째 방법은 Singh 등(1968)의 변형계통표집을 일반화한 방법으로 표본을 뽑은 뒤, 추정량을 정하는 과정에서 보간법을 사용한 것이며, 둘째 방법은 변형계통표집으로 표본을 뽑은 뒤, 회귀추정법으로 모수를 추정하는 것이다. Cochran (1946)의 무한초모집단 모형에 근거를 둔 기대평균제곱오차를 기준으로 하여 기존의 방법들과 제시된 방법들을 비교하였으며, 제시된 두 방법 간의 상호 비교도 시행하였다.
본 연구에서는 효율적인 온 라인 문서 자동 분류를 위해 매우 중요한 분류 작업의 전처리 단계인 특징선택을 위한 새로운 방법이 제안된다. 대부분의 기존 특징선택 방법 연구에서는 특징 집합의 모집단이 단일 모집단으로써 한 모집단이 가지는 정보만으로 분류에 적합한 특징들을 선택하여 특징 집합을 구성하였다. 본 연구에서는 단일 모집단에 한하여 수행되는 특징선택 뿐 만 아니라, 다중 모집단을 가지는 혼합 특징 집합에 대해서 특징선택을 함으로써 다양한 정보를 바탕으로 한 특징 집합을 구성하였다. 혼합 특징 집합은 두 종류의 특징 집합으로 구성된다. 즉 각각 문서로부터 추출한 단어로 구성된 원본 특징 집합과 원본 특징 집합으로부터 LSA를 이용하여 새로 생성한 변형 특징 집합이다. 혼합 특징 집합으로부터 필터 방법과 래퍼 방법을 이용한 하이브리드 방식의 특징 선택을 통해 최적의 특징 집합을 찾고, 이를 이용하여 문서 분류 실험을 수행하였다. 다양한 모집단의 특징들의 정보를 모두 고려함으로써 보다 향상된 분류 성능을 보일 것이라고 기대하였고, 인터넷 뉴스 기사를 대상으로 분류 실험한 결과 90% 이상의 향상된 분류성능을 확인하였다. 특히, 재현율과 정밀도 모두 90%이상의 성능을 보였으며, 둘 사이의 편차가 낮은 것을 확인하였다.
본 논문에서는 3대역 RGB카메라를 이용하여 분광 반사율을 추정할 때 추정오차를 개선하는 방법을 제안한다. 제안된 방법에서는 색상의 영역별로 적응적인 주성분 집합을 구성함으로써 추정오차를 줄였다. 이때 적응적인 주성분 집합을 구성하기 위하여 Lloyd양자화기 설계 알고리즘을 적용하여 N개의 주성분 집합을 구성하기 위한 분광반사율 모집단을 구성하였다. 전체 모집단으로 사용한 1485 Munsell 색시료의 대표값을 찾아내기 위해서, 초기값으로 Macbeth Color Checker를 사용하였으며 Lloyd 알고리즘의 반복 적용으로 분광 반사율 모집단 전체를 영역별로 분류하고 각 영역에 대하여 주성분 분석을 통해 적응적인 주성분 집합을 구성하였다. 실험 결과, 제안한 방법은 색차 및 분광 반사율에 대한 평균자승오차가 기존의 두 가지의 3대역 주성분 분석 방법 및 5대역 위너 추정을 이용한 분광 반사율 추정 방법보다 개선됨을 확인하였다.
셀룰러 유전알고리즘(CGAs)은 모집단이 특정한 위상 구조를 갖는 유전알고리즘의 일종이다. 보통의 경우, CGAs의 모집단 공간은 네트워크 이론 측면에서 상대적으로 긴 평균경로길이와 큰 클러스터링계수를 갖는 정규 격자형 위상 구조이다. 평균경로길이가 길면 멀리 떨어진 개체들 사이의 유전적 상호작용이 느리게 일어난다. 따라서 클러스터링계수를 유지하면서 평균경로길이를 줄인다면 개체의 다양성이 유지되면서도 모집단이 보다 빠르게 수렴할 것이다. 이 논문에서는 최소좁은세상 셀룰러 유전알고리즘(SSWCGAs)을 제안한다. SSWCGAs에서 각 개체는 클러스터링이 잘되었으면서도 노드를 연결하는 평균경로길이가 짧은 모집단에 거주하여, 클러스터링에 의한 세부탐색 능력을 유지하면서도 전역탐색을 잘하게 된다. 네 가지 실변수 함수와 두 가지 GA-hard 문제에 대한 실험을 통하여 SSWCGAs가 SGAs 및 CGAs보다 효과적임을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.