• Title/Summary/Keyword: 두뇌 활성 패턴

Search Result 7, Processing Time 0.028 seconds

Brain Activations on the Hypothesis-Generating and Hypothesis-Understanding in Pre-Service Teachers not Majoring in Biology, Pre-Service Teachers Majoring in Biology and Biologists (생물전공 및 비전공 예비교사들과 생물학자들의 가설 생성 및 이해에서 나타나는 두뇌 활성 차이)

  • Kwon, Yong-Ju;Lee, Jun-Ki
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.173-183
    • /
    • 2009
  • We aimed to examine difference between the brain activation pattern based upon hypothesis-generating and hypothesis-understanding among the pre-service teachers not majoring in biology, the pre-service teachers majoring in biology and the biologists using fMRI. We have designed two sets of task paradigm on the biological phenomena: hypothesis-generating and hypothesis-understanding and thirty six healthy participants (twelve participants per group) performed the tasks. The result was showed that 1) there were significant differences of brain activation patterns in hypothesis-generating on the biological phenomena among three groups, 2) the left middle frontal gyrus in the part of DLPFC region was play an important roles of hypothesis-generating and make a significant differences among three groups. The superior ability of biologists were based upon the activation of middle frontal gyrus which has secondary integration of abstract information, and 3) there were no significant differences of brain activation patterns in hypothesis-understanding on the biological phenomena among three groups. These findings provided that scientist might be skillful in generating a new scientific knowledge.

  • PDF

Differences in Neural Current Sources of Science Gifted and Normal Children in Creative Reasoning (과학 영재와 일반아의 창의적 추리과정 시 나타나는 신경 전류원의 차이)

  • Kwon, Suk Won
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.131-141
    • /
    • 2015
  • 본 연구에서는 과학 영재와 일반아의 창의적 추리과정시 나타나는 두뇌사고 패턴을 sLORETA 분석 기법을 통해 분석하고, 신경생리적 특성을 파악하여 과학 영재아 판별의 기초와 활용 가능성을 알아보는 것이다. 본 연구를 위한 대상자는 과학영재아 6명과 동일 학군 및 학년에 속한 일반아 6명으로 총 12명의 오른손잡이로 하였다. 창의적 추리과정을 위해 사용된 과제는 레이븐 도형점진행렬검사를 사용하였고, 안정상태와 과제 수행간 뇌파를 측정하였다. 뇌파는 19개의 전극을 통해 수집된 16초간의 데이터를 통해 분석하였으며, sLORETA 분석 기법을 통해 8개의 주파수 대역(Delta, Theta, Alpha-1/2, Beta-1/2, Gamma, Omega)에 대한 평균 전류밀도값을 그룹별로 비교하였다. 그룹간 두뇌 활성 주파수 대역을 비교한 결과 눈감고 안정 상태에서 과학영재아가 일반아에 비해 알파-2 대역에서, 레이븐 과제 수행시 과학 영재아가 일반아에 비해 알파-1과 감마 대역에서 강한 활성이 관찰되었다. 연구 결과 나타난 알파 및 감마 대역 활성과 우반구로의 기능적 편측화(Lateralization)는 창의적 문제 해결시 영재아에게 나타나는 대표적 특성 중 하나이며, 배외측전전두피질(DLPFC)의 활성은 과학영재아의 높은 유동지능을 반영하는 결과라 볼 수 있다.

Brain Activation Pattern and Functional Connectivity during Convergence Thinking and Chemistry Problem Solving (융합 사고와 화학문제풀이 과정에서의 두뇌 활성 양상과 기능적 연결성)

  • Kwon, Seung-Hyuk;Oh, Jae-Young;Lee, Young-Ji;Eom, Jeung-Tae;Kwon, Yong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.203-214
    • /
    • 2016
  • The purpose of this study was to investigate brain activation pattern and functional connectivity during convergence thinking based creative problem solving and chemistry problem solving to identify characteristic convergence thinking that is backbone of creative problem solving using functional magnetic resonance imaging(fMRI). A fMRI paradaigm inducing convergence thinking and chemistry problem solving was developed and adjusted on 17 highschool students, and brain activation image during task was analyzed. According to the results, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, medial frontal gyrus, cingulate gyrus, precuneus and caudate nucleus body in left hemisphere and cuneus and caudate nucleus body in right hemisphere were significantly activated during convergence thinking. The other hand, middle frontal gyrus, medial frontal gyrus and caudate nucleus in left hemisphere and middle frontal gyrus, lingual gyrus, caudate nucleus, thalamus and culmen of cerebellum in right hemisphere were significantly activated during chemistry problem solving. As results of analysis functional connectivity, all of areas activated during convergence thinking were functionaly connected, whereas scanty connectivity of chemistry problem solving between right middle frontal gyrus, bilateral nucleus caudate tail and culmen. The results show that logical thinking, working memory, planning, imaging, languge based thinking and learning motivation were induced during convergence thinking and these functions and regions were synchronized intimately. Whereas, logical thinking and inducing learning motivation functioning during chemistry problem solving were not synchronized. These results provide concrete information about convergence thinking.

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process (공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용)

  • Shin, Jung-Yun;Yang, Il-Ho;Park, Sang-woo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.371-390
    • /
    • 2021
  • The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.

Analysis of Brain Activation on the Self-Regulation Process in College Life Science Learning between Biology Major and Non-Major Students (생물전공 대학생과 비전공 대학생의 생명과학 학습에서 자기조절 과정의 두뇌 활성 분석)

  • Su-Min Lee;Sang-Hee Park;Seung-Hyuk Kwon;Yong-Ju Kwon
    • Journal of Science Education
    • /
    • v.46 no.3
    • /
    • pp.255-265
    • /
    • 2022
  • The purpose of this study is to analyze and compare brain activation that appears in the self-regulation process of biology major and non-major college students in life science learning. The self-regulation task implemented a life science learning situation with the concept of biological classification. The brain activation of college students was measured and analyzed by fNIRS. In the assimilation process, bilateral FP and left DLPFC show significant activation, and the two groups show a difference in the left OFC activation related to motivation and reward. In the conflict process, the left DLPFC shows significantly lower activation in common, and the two groups show a difference in activation between BA 46, which is related to recent memory, and BA 47, which is related to long-term memory. In the accommodation process, a significantly high activation was found in right DLPFC in common, and the two groups show a difference in activation between right DLPFC and right FP. These areas are in the right frontal lobe area and are related to the understanding of life science knowledge. As a result of this study, it can be seen that the brain activation patterns of biology major and non-major college students are different in the self-regulation process. In addition, we will propose additional neurological studies on self-regulation and present systems and learning strategies that can be constructed in school settings.

A Study on the Prefrontal EEG Activities in the case of Audio-Visual Learning using Wavelet Transform (Wavelet Transform을 이용한 시청각 학습시의 전두부 뇌파 활성도에 관한 연구)

  • Jung, So-Ra;Ji, Seok-Jun;Lee, O-Girl;Kwak, Ryue-Hye;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2177-2178
    • /
    • 2006
  • 학습 행동에서의 뇌파 측정은 실시간으로 두뇌 기능 상태를 연구하는데 유용한 연구 방법이며 대뇌의 부위 중 전두엽은 새로움에 대한 지향 반응과 사고 활동에 중요한 역할을 한다. 본 연구에서는 중학교 2학년 학생에게 새로운 시청각 학습 자료를 제시하고 5회의 반복학습이 이루어지는 과정에서의 전두부($Fp_2,Fp_2$)의 뇌파를 측정하고 Fourier, Wavelet 변환을 하여 정량적으로 분석하였다. 주의 집중, 정서 등 인지와 관련지어 특정파의 조절 능력 및 파의 특성을 이용한 여러 연구들을 종합해보면, 기억력, 주의지속과 연관되어 알파파, 베타파와 세타파가 발생되는 것을 볼 수 있다. 이 중 알파파는 기존의 뇌 상태를 동기화시키고 주의나 기억의 과정에 영향을 미칠 수 있는 것으로 증명되었다. 본 논문에서는 신호 처리에 높은 효율을 보이는 Wavelet 변환을 이용하여, 학습이 됨에 따라 변화하는 EEG 신호 가운데 알파파의 패턴과 활성도를 분석하고자 한다.

  • PDF

ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study (생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구)

  • Kwon, Suk-Won;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.336-345
    • /
    • 2009
  • The purpose of this study is to analysis ERF components patterns of causal questions generated during the observation of biological phenomenon. First, the system that shows pictures causing causal questions based on biological phenomenon (evoked picture system) was developed in a way of cognitive psychology. The ERF patterns of causal questions based on time-series brain processing was observed using MEG. The evoked picture system was developed by R&D method consisting of scientific education experts and researchers. Tasks were classified into animal (A), microbe (M), and plant (P) tasks according to biological species and into interaction (I), all (A), and part (P) based on the interaction between different species. According to the collaboration with MEG team in the hospital of Seoul National University, the paradigm of MEG task was developed. MEG data about the generation of scientific questions in 5 female graduate student were collected. For examining the unique characteristic of causal question, MEG ERF components were analyzed. As a result, total 100 pictures were produced by evoked picture and 4 ERF components, M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms). The present study could guide personalized teaching-learning method through the application and development of scientific question learning program.

  • PDF