본 논문에서는 두꺼운 꼬리를 갖는 확률분포들의 여러 부류에 대해서 살펴본다. 주어진 하나의 확률분포가 이들 중 어떤 부류에 속하는 지를 알려면 해당 분포의 꼬리 확률에 대한 (점근) 표현식을 알아야만 한다. 그러나 대다수의 절대 연속 확률분포들은 분포함수가 아닌 확률밀도함수로 명시되기 때문에 통상적으로 이들의 꼬리 확률에 대한 표현식을 얻는 작업은 그리 쉬운 일이 아니다. 본 논문에서는 이러한 경우 확률밀도함수만을 이용하여 꼬리 확률에 대한 점근 표현식을 쉽게 얻을 수 있는 하나의 방법을 제안한다. 또한 제안한 방법을 설명하기 위하여 몇가지 예를 첨부한다.
두꺼운 꼬리 분포와 레버리지효과 등의 금융시계열의 전형적인 특징에도 불구하고 기존 빈도론적 접근법에서는 이를 명시적으로 포착하는 확률변동성모형이 제시된 바 없다. 본 연구는 빈도론적 접근법에서 수익률 금융시계열의 두꺼운 꼬리 분포와 레버리지효과를 명시적으로 포착할 수 있는 근사적인 확률변동성모형 설정을 제시하고 이에 대한 Langrock 등 (2012)의 HMM근사를 이용한 최우추정을 제안한다. 본 연구는 다양한 모의실험과 실증분석을 통해 본 연구에서 제안하는 근사모형이 두꺼운 꼬리 분포와 레버리지효과를 정밀하고 효과적으로 추정할 수 있음을 보인다.
꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 연구하였다. 통계량의 극한 분포에 근거한 점근적 방법과 붓스트랩 방법을 같이 고려하였다. 이 두 방법에 모수적, 비모수적, 준모수적 기법을 각각 적용할 수 있는데, 전체 11가지 신뢰구간의 성능을 실제신뢰수준과 길이로 비교하였다. 모의실험 결과 준모수적이면서 점근적인 신뢰구간과 축량을 이용하는 준모수적 붓스트랩 신뢰구간이 실제신뢰수준의 기준에서 안정된 성능을 보인다는 것을 알 수 있었다.
시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.
Communications for Statistical Applications and Methods
/
제3권3호
/
pp.83-92
/
1996
확률화 블록 계획법에서 우산형 대립가설에 대한 점근 분포 무관 검정법을 제시하고 제안된 검정통계량의 점근적 정규성과 모수적 방법 및 비모수적 방법의 점근상대효율을 관찰하였다. 검점통계량은 블록 효과를 추정하여 제거한 관측치의 전체 블록 순위를 사용하여 제안하였으며 제안된 검정통계량의 소표본 Monte Carlo 연구를 통해 실험 검정력을 비교하였다. 그 결과 본 논문에서 제안된 검정통계량이 꼬리가 두꺼운 분포에서는 전반적으로 우수하고 로버스트한 것으로 나타났다.
일반적으로 회귀분석의 최적화는 평균적인 개념을 확장하여 사용되어지고 있다. 평균은 관찰값들에 관한 모든 정보와 관련된 통계량으로써 많은 연구에 이용되어지고 있다. 정규분포를 이루는 모집단의 경우 평균을 사용한 추정이 바람직하지만, 이상치로 인한 분포의 꼬리가 두꺼워지는 경우 중위수(median)를 사용하는 것이 바람직하다고 알려져 있다. 강수량의 분포형태는 꼬리(tail)가 두꺼운 왜곡된 형태를 갖고 있으므로 robust 통계량인 Quantile을 이용한 강수량의 분석 및 평가를 실시하였다. 본 연구에서는 Quantile에 따른 회귀선의 변화를 이용하여 강수량의 경향성을 평가하고, 극치강수량의 변화를 보여줄 수 있는 Quantle값을 추출해 보고자 한다. 또한 bootstrap 방법을 이용하여 Quantile에 따른 회귀계수의 신뢰구간을 분석하여 회귀인자의 신뢰성을 평가하였다. 본 연구에서 적용한 Quantile Regression 기법은 회귀계수의 추정에 있어서 회귀인자의 신뢰성을 Quantile-회귀계수 그래프를 통해 분석할 수 있으며, 이상값의 영향을 저감시키는 평균과 달리 이상값의 영향을 효과적으로 분리 및 재현시킬 수 있어 극치값에 따른 변화를 효과적으로 평가할 수 있으며, robust 통계량의 특징인 분산이 적은 안정적인 추정량을 확보할 수 있다.
본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.
주가가 정규분포보다 꼬리가 두꺼운 확률변수인 점, 주가의 변동이 군집화를 이루고 있는 현상, 주가가 장기기억과정에 의하여 생성되고 있다는 점이 실증분석을 통하여 밝혀지고 있다. 주가를 형성시키는 이 세 요소가 하나의 모형내에 통합되지 못하고 있는 실정인데. 이 세 요소가 통합되는 확률과정이 다중프랙탈과정이다. 다중프랙탈과정은 표준브라운 운동과정과 랜덤시간 변형과정의 결합을 통하여 얻게되는 확률과정이다. 이 과정은 Ito형의 확률과정에 포함되지 않는 연속과정인 것이다. 본 논문에서는 주가시계열의 Pareto-Levy 분포성, 분포의 두꺼운 꼬리성질, 시계열상관이 쌍곡선율로 완만하고 무척 더디게 감소하여 장기에 걸쳐서 평균에 회귀하는 장기기억성, 군집화 현상, 거래시간의 통합성을 포괄하는 다중프랙탈과정의 성질을 살펴보고 이 과정이 주가를 생성시키는 과정인지 아닌지를 검정하는데 그 목적을 둔다. 다중프랙탈과정은 표준브라운 운동과 시간변형과정의 통합을 통하여 형성된 확률과정이다. 시간변형과정은 주가의 군집화 현상을 포착하는 과정이다. 표준브라운 운동은 이 운동과 시간 변형과정의 통합화 속에서 분수브라운운동의 성질이 용해되어 장기기억과정을 포착해준다. 다중프랙탈성은 관찰치들의 시간척축이 변함에 따라 발생하는 확률과정의 적률에 가해진 일련의 제약조건이라 할 수 있다. 이 모형은 마팅게일 성질을 만족하는 모형으로 변형시킬 수도 있으며 자기회귀 조건부 이분산 모형을 대체할 수 있는 모형이다. 이 모형에서는 자기상관을 가지고 있지 않은 수익률에도 적용가능하며, 따라서 시장효율성을 점검하는데에도 이용할 수 있다. 이 모형은 축척일치성이라는 성질이 존재하므로 데이터의 총량화가 무리 없이 이루어질 수 있다. 다중프랙탈은 국소축척구성성질을 가지고 있으며, 시간의 흐름에 따라 변할 수 있는 국소축척구성요소를 내포하고 있다. 자본자산의 다중프랙탈 과정을 한국종합주가지수에 적용하였는 바, 이 과정이 한국종합주가 지수의 행동 잘 설명하고 있다. 따라서 한국종합주가지수는 분포의 꼬리의 두꺼움, 자산가격의 군집화현상, 특이한 값, 장기기억을 내포하고 있다.
우리는 두꺼운 꼬리를 갖는 분포의 모수를 추정하는 방법론을 연구하였다. 일반적으로 MLE(최대우도 추정량)가 모수추정 방법론중에 가장 많이 사용되는데, 이는 MLE가 점근적 일치성과 정규성 그리고 효율성을 가지고 있기 때문이다. 하지만 MLE가 늘 가장 좋은 추정법은 아니다. 어떤 경우에는 MLE가 존재하지 않을 수도 있고 계산이 안정적이지 않을 수도 있다. 본 논문에서는 비선형 최소제곱추정법을 이용한 모수추정 방법론을 제시하고 그 성능을 MLE와 비교하였다. NLS 추정량은 empirical CDF와 이론적 CDF의 차이의 제곱을 최소화 하는 방법론이다. 본 논문에서는 두꺼운 꼬리를 가지는 다양한 분포하에서 우리가 제안하는 NLS방법론과 MLE와의 성능을 비교하였다. 그 결과, Burr 분포에서 표본의 수가 적을 때 우리의 방법론이 MLE보다 좋은 성능을 보여주었고, Frechet 분포에서도 좋은 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.