• Title/Summary/Keyword: 동하중해석

Search Result 39, Processing Time 0.024 seconds

Consideration of the Structural Strength of High Speed Aluminum Planning Boat Plate Member (고속 경구조선 알루미늄 판부재의 구조강도 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In order to establish a design guide for the bottom plate structure of a 4.3 ton aluminum planning boat, the feasibilities of bottom plate scantling of the ship are investigated based on the results of structural strength analysis and a simple equation and evaluation system are developed for initial structural design purposes. This study consists of 5 steps: First, the background, necessity, and purpose of this study are explained briefly, Second, the principal dimensions of this ship, the position of the considered bottom plate members and material characteristics are introduced. Third, the equivalent design pressure concept is introduced and evaluated based on experience and experimental data. Fourth, the strength of bottom plate members are examined using elasto-plastic nonlinear structural analysis, and response levels and several boundary conditions are reviewed based on the analysis results. Finally, in order to suggest design guides in respect to the ship's structural design, a simple design equation and evaluation system for bottom plate members are suggested for boats in the 4.3 ton aluminumboat range through the introduction of safety factorsbased on the ultimate design pressure concept.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

Mechanical System Design and Development of the HAUSAT-1 Picosatellite (초소형위성 HAUSAT-1의 기계시스템 설계 및 개발)

  • Hwang, Ki-Lyong;Min, Myung-Il;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.103-113
    • /
    • 2004
  • The satellite is exposed to the severe vibration environments such as random vibration environments such as random vibration, acceleration, shock, and acoustics during launch ascent and transportation. It is also faced with various space environments such as thermal vacuum, radiation and microgravity during the mission life. The satellite should be designed, manufactured, assembled and tested to be able to endure in these harsh environments. This paper addresses the results of the structural and thermal design and analyses for the HAUSAT-1 picosatellite which is scheduled to launch in the first quarter of 2005 by Russian launch vehicle "Dnepr". The qualification vibration and thermal vacuum tests have been conducted and passed at the satellite level to ensure that the HAUSAT-1 mechanical system was designed to be stable with enough margin.

A Study on Dynamic Stability Regions for Parabolic Shallow Arches (낮은 포물선(抛物線) 아치의 동적(動的) 안정영역(安定領域)에 관한 연구(硏究))

  • Park, Kwang Kyou;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 1986
  • Dynamic stability of parabolic shallow arches, which are supported by hinges at both ends, is investigated. The Runge-Kutta method is used to perform time integrations of the differential equations of motion with proper boundary conditions. Based on Budiansky-Roth criterion, dynamic critical load combinations are evaluated numerically for cases of step loads of infinite duration and impulse loads, individually. The results are plotted to get interaction curves. The loci of the dynamic critical loads, which are obtained in this study, are proposed as boundaries between the dynamic stability and instability regions for the parabolic shallow arches. The results for the parabolic shallow arches are also compared with those for sinusoidal arches of the same arch rises. According to the investigation, the dynamic stability regions for the parabolic arches are larger than those for the sinusoidal arches. However, it is shown that the arch rise is the more governing factor than the shape.

  • PDF

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.

An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design (동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰)

  • Lee Hyun-Ah;Kim Yong-Il;Kang Byung-Soo;Kim Joo-Sung;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

Evaluation of settlement behavior of ballasted layer mixed with specially shaped artificial ballasts under train loading (열차 하중 작용 시 특정형상 인공자갈이 혼합된 도상층에서의 침하 거동 평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.35-40
    • /
    • 2020
  • The ballast layers play a key role in distributing and supporting a trainload. On the other hand, it settles down by dynamic train loading due to large void ratios. Consequently, it requires continuous maintenance. In this paper, ballast layers mixed with three types of specially shaped artificial ballast (AB) (Rectangular, Tetrapod, Hexagonal) were modeled by using a two dimensional DEM (Discrete Element Method). Repeated loading tests were performed to evaluate the settlement behavior of the ballast layers. The smallest settlement was observed in the case of the ballast layer mixed with Tetrapod AB than in other cases, according to an analysis of the force transfer routes. In addition, contact force analysis showed that the Tetrapod AB, which has a concave shape, could easily make small and multi-channel force-transfer routes. This means that the stress in the ballast layer by the train loading transferred through the sleeper uniformly was distributed well by the AB. Therefore, the settlement of the ballast layer mixed with the concave-shaped Tetrapod AB could be reduced effectively under a repeated train loading. The effects of a decrease in settlement of the ballast layer highlight the possibility of a maintenance-free ballasted track.

Effect of Constrain Condition of Soil Nail Head on Slope Stability (쏘일 네일 두부 구속조건이 사면 안정성에 미치는 영향)

  • Kim, Yongeung;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Natural disasters such as earthquakes and tsunamis occur suddenly, so that they cause massive loss of lives and property. Especially earthquakes represent a particularly severe threat because of the extensive damage accompanied by them. In Korea, an earthquake-resistant design has been rarely applied to a design or construction of slope. However, in resent years, the researches for earthquake-resistance have been performed because the importance on the earthquake-resistance is perceived and highlighted. Soil nail method, one of the slope stability methods, is excellent for its constructability and cost effectiveness, as compared with other stability methods. Also, this method has been widely used for reinforced construction for slope stability. The studies of soil nail method have been performed on the interaction behavior between nails and slopes as well as the varied load condition such as static load, dynamic load and so on. Nevertheless, there has been minimal research regarding the constraint condition of nail head. In this study, the numerical analysis was performed for identifying effect on slope stability for the constrain condition of the soil nail. The result shows that the resistance of constrained the nail head on reinforced slope is larger compared to the one of unconstrained nail head.