• Title/Summary/Keyword: 동파작용

Search Result 9, Processing Time 0.022 seconds

The Effect of a Freeze-Thaw Cycle on Rock Weathering: Laboratory Experiments (동결-융해작용에 따른 암석풍화의 특성)

  • YANG, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.21-36
    • /
    • 2011
  • Rock Weathering is a basic of geomorphological evolution as a preparation of materials. Of those, frost shattering has traditionally been considered as the operative process causing rock breakdown in cold regions as well as temperate zone. Each Granite(fresh rock, semi-weathered), Gneiss, Limestone, Dolomite was prepared slab specimens in ten, repeated freeze-thaw cycles of 180 under the -25℃~+30℃, and the changes was observed in physical properties and weathering aspect. Rock shattering was more active in waterlogging conditions rather than atmospheric and soil conditions. Limestone and Dolomite that high porosity are most severely crushed. Gneiss, regardless surface of the crack, joint, fissure and has a lowest rock strength(SHV), was even though no physical changes and their weathering product do not generate, has a very high resistance to weathering.

Dynamic Wave Pressure Study on a Recurved Offshore Structure (곡면 해양구조물에 작용하는 동파력 고찰)

  • Jo, Cheol-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.149-155
    • /
    • 1995
  • This study is to investigate the dynamic pressure caused by breaking waves on a recurved offshore structure. A physical modelling was performed in a two-dimensional wave flume. The measuments from the physical modelling were compared with several known equations. The shock and secondary pressures were found to be dependent on water depth, breaking wave height and the size of the air pocket. The maximum pressure was recorded near the still water level and the secondary pressures near the recurved the recurved structure were found to be less than those experienced in a vertical offshore structure.

  • PDF

Comparison of the Effects of Straight and Twisted Heat Trace Installations Based on Three-dimensional Unsteady Heat Transfer (열선의 직선시공과 감기시공의 동파방지 효과 비교를 위한 3차원 비정상 수치해석)

  • Choi, Myoung-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This paper numerically examines, straight and twisted electrical heat trace installations for their anti-freezing effects on water inside a pipe. The unsteady incompressible Navier-Stokes equations coupled with an energy equation were solved to compare the two installation methods. The heat conduction of the pipe with a heat source interacts with the natural convection of the water, and the conjugate heat transfer was considered using a commercial code (ANSYS-FLUENT) based on a SIMPLE-type algorithm. Numerical experiments, were done to investigate the isotherms and the vector fields in the water region to extract the evolutions of the minimum and maximum temperatures of the water inside the pipe. There was no substantial difference in the anti-freezing effects between the straight and twisted. Therefore, the straight installation is recommended after considering the damage and short circuit behavior of the electrical heat trace.

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment (고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.367-380
    • /
    • 2014
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

A Clinical Study of Hypertrophic Pyloric Stenosis (비후성 유문 협착증의 임상적 고찰)

  • Kim, Yoon Hee;Jung, Myung Sup;Byun, Soon Ok
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.11
    • /
    • pp.1389-1396
    • /
    • 2002
  • Purpose : This study was done to analyze the changes in the clinical conditions and the diagnosis of hypertrophic pyloric stenosis. Methods : We report a retrospective clinical analysis of 39 patients with hypertrophic pyloric stenosis from Jan. 1992 to Aug. 2001. The age and sex distribution, family and birth history, clinical symptoms, the ultrasonographic and the operative sizes of pyloric canals were compared. Results : The body weight was below the 3 percentile at admission in eight cases(20.5%). "Olive like mass" in right upper quadrant was palpated during physical examination in 23 cases(59%) and gastric peristaltic wave observed in six cases(15%). The ultrasonographic measurements showed that the pyloric muscle thickness to be $4.95{\pm}0.99mm$($mean{\pm}SD$), pyloric diameter $14.42{\pm}2.64mm$, and pyloric length $20.17{\pm}3.92mm$. Fredet-Ramstedt pyloromyotomy was employed in all cases. The operative measurements of the pyloric muscle thickness was $5.11{\pm}1.01mm$, pyloric diameter $15.01{\pm}2.47mm$, and pyloric length $22.32{\pm}3.43mm$. Conclusion : There was no significant difference between the ultrasonographic and operative measurements. Currently, the hypertrophic pyloric stenosis patients showed lesser clinical hallmarks of the disease. The earlier diagnosis using imaging studies before development of significant metabolic abnormalities is becoming an important factor that change the future outcomes of hypertrophic pyloric stenosis.