• Title/Summary/Keyword: 동축스월

Search Result 58, Processing Time 0.03 seconds

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 이중동축 스월제트 유동특성에 관한 연구)

  • Kim, Jung-Bae;Kim, Heuy-Dong;Lee, Kwon-Hee;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

An Experimental Study of Under-Expanded Coaxial, Swirling Jets (부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

The steady and unsteady state computations on the flame structure for a Kerosene coaxial swirl injector (케로신 동축 와류형 분사기의 정상 및 비정상 상태 화염구조 해석)

  • Han, Sang-Hoon;Kim, Seong-Ku;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.31-34
    • /
    • 2012
  • Numerical simulations of the steady and unsteady state were conducted for a coaxial swirl injector with Kerosene fuel. Non-premixed equilibrium model based on chemical equilibrium assumption was used as turbulence-chemistry interaction model. As an equations of state, SRK(Soave-Redlich-Kwong) EOS was applied to deal with the behavior of real fluid in a high pressure condition. Through the steady and unsteady computations, mean values of steady and time-averaged unsteady state were compared on the temperature and OH mass fraction and it was shown that the flame structure of steady state was different to that of time-averaged unsteady state.

  • PDF

Effects of Backhole on Hyraulics of Liquid Rocket Swirl Coaxial Injector (액체로켓 동축형 스월인젝터에서 Backhole에 의한 수력학적 영향)

  • Hwang Seong-Ha;Seol Jaehoon;Jeong Wonho;Han Poongkyu;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.287-290
    • /
    • 2002
  • 'Backhole' is an extra empty volume where is located behind the tangential entries at the rear par of the vortex chamber in the swirl coaxial injector. With the backhole, there are three major hydraulic characteristics. First, mass flow rate is increased about $15{\%}$ compared with the case without the backhole. Second, with the backhole, the center region of the injected flow has more large volume than that of without the backhole. The last, some range of the cone angle can be controlled by the backhole Experiments are conducted by using a PDPA apparatus, a mechanical patternator, stroboscopic photography and etc. With the backhole, based on cold-flow tests, the model swirl injector has some Improvement in its performance.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 동축 스월제트의 유동특성에 대한 연구)

  • 김중배;이준희;이권희;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

Combustion Chamber Development for Suppression of Combustion Instability in a Gas Generator at a Liquid Rocket Engine (액체로켓엔진용 가스발생기에서 연소불안정 방지를 위한 연소실 개발)

  • Ahn Kyu-Bok;Lee Kwang-Jin;Lim Byoung-Jik;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • The results of combustion performance test of fuel-rich gas generator with dual swirl injectors are described. By changing simulating duct and recess number(RN) of the injectors, we inspected whether the combustion instability took place. When the injectors of RN = 0.5 were used, combustion instabilities could be reduced using the simulating duct. However, the effect of the simulating duct on the gas generator with the injectors of RN = 1.5 was not significant.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF