• Title/Summary/Keyword: 동적 벌징

Search Result 5, Processing Time 0.024 seconds

Analsis of Three-Dimensional Upst Forging of Clover-Shaped Disks (3차원 변형을 고려한 클로버 형상 소재의 업세팅 단조해석)

  • 양동열;김종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.535-540
    • /
    • 1986
  • 본 연구에서는 소재의 3차원 변형, 즉 평면변형(sidewise spread)과 벌징변형 을 동시에 고려할 수 있는 간단한 동적가용 속도장을 제안하고 이를 클로버(clover) 시편의 업세팅 단조 해석에 적용해보기로 한다. 상계이론에 의한 전체 에너지 소비 율을 최소화시키면서 그때 그때의 높이 감소에 따른 단조 하중과 변형 형상을 구한다. 실험은 SM15C 탄소강을 이용하여 시편의 형상과 윤활조건을 바꿔가면서 상온에서 수행 한다.

Dynamic Bulging Behavior Analysis by Finite Difference Method in High Speed Continuous Casting of Thin Slab (유한 차분법에 의한 Thin Slab 고속 연속주조의 동적벌징 거동해석)

  • Jeong, Yeong-Jin;Sin, Geon;Jo, Gi-Hyeon;Gang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1650-1660
    • /
    • 2000
  • Continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, rep lacing the conventional route of ingot casting and rolling. In order to achieve this merit, however, more studies about the mechanism between roll and slab are needed. In this paper, a dynamic bulging in steel cast slabs was simulated by considering the solidification and heat transfer. This study is to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under the ferrostatic pressure and slab-self weight has been calculated in terms of creep and elasto-plasticity. The strain and strain rate distributions in solidified shell undergoing a series of bulging are calculated with working boundary conditions.

An analysis of deformation behavior on dynamic bulging in the high speed continuous casting (고속 연속주조에 있어서 동적 벌징의 변형거동 해석)

  • 강충길;윤광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1217-1226
    • /
    • 1988
  • This paper shows an deformation behavior of steel cast slabs, which is used to prevent internal cracks of a slab in an unbending zone, in case of hot charge rolling(HCR) and hot direct rolling(HDR). The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure has been computed in terms of creep and elastic-plasticity and for high strand surface temperature and high casting speed V=1.4-2.2m/min. The strain and strain rate distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대학 UBET해석)

  • Lee, Hee-In;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-181
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extrude length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shape punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대한 UBET 해석)

  • 황범철;이희인;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1129-1133
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extruded length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shaped punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF