• 제목/요약/키워드: 동적 가중치 방법

검색결과 107건 처리시간 0.024초

동적 다중 그룹 혼합 가중치를 이용한 한국어 음성 인식의 성능향상 (Improvement in Korean Speech Recognition using Dynamic Multi-Group Mixture Weight)

  • 황기찬;김종광;김진수;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.544-546
    • /
    • 2002
  • 본 논문은 CDHMM(Continuous Density Hidden Markov Model)의 훈련하는 방법을 동적 다중 그룹 혼합 가중치(Dynamic Mutli-Group mixture weight)을 이용하여 재구성하는 방법을 제안한다. 음성은 Hidden 상태열에 의하여 특성화되고, 각 상태는 가중된 혼합 가우시안 밑도 함수에 의해 표현된다. 음성신호를 더욱더 정확하게 계산하려면 각 상태를 위한 가우시안 함수를 더욱더 많이 사용해야 하며 이것은 많은 계산량이 요구된다. 이러한 문제는 가우시안 분포 확률의 통계적인 평균을 이용하면 계산량을 줄일 수 있다. 그러나 이러한 기존의 방법들은 다양한 화자의 발화속도와 가중치의 적용이 적합하지 못하여 인식률을 저하시키는 단점을 가지고 있다. 이 문제를 다양한 화자의 발화속도에 적합하도록 화자의 화자의 발화속도에 따라 동적으로 5개의 그룹으로 구성하고 동적 다중 그룹 혼합 가중치를 적용하여 CDHMM 파라미터를 재구성함으로써 8.5%의 인식율이 증가되었다.

  • PDF

이기종 웹 클러스터 시스템에 대한 부하분산 알고리즘의 연구 (A study of the load distributing algorithm on the heterogeneously clustered web system)

  • 이영
    • 정보처리학회논문지A
    • /
    • 제10A권3호
    • /
    • pp.225-230
    • /
    • 2003
  • 본 연구에서 이기종으로 구성된 웹 클러스터 시스템의 부하분산 알고리즘을 개발하고자 한다. 다수의 알고리즘을 제안하고, 동시 사용자수에 의거하여 응답시간을 측정하고자 한다. 동적 가중치에 의한 부하분산 알고리즘과 고정가중치에 의한 부하분산 알고리즘을 비교하고 동적 가중치 알고리즘이 우수함을 입증하고자 한다. 또한 클러스터 시스템의 효율은 사용자수가 증가함에 따라 향상됨을 보이고자 한다.

가중치 자동 조절을 이용한 매칭 에이전트 (Matching Agent using Automatic Weight-Control)

  • 김동조;박영택
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.439-445
    • /
    • 2000
  • 다차원의 속성들을 포함한 대용량의 데이터베이스 또는 점보 저장소의 데이터로부터 지식을 추출하고 이를 활용하기 위해서는 데이터 마이닝의 인공지능 기법 중 기계학습을 활용할 수 있다. 본 논문은 질의어를 바탕으로 각 작성들에 가중치를 적용하여 사용자가 원하는 데이터 집합을 분류하고, 사용자 피드백을 통하여 속성 가중치를 동적으로 변화시킴으로써 검색결과를 향상시키는 방법을 제안한다. 본 논문에서는 데이터 집합을 분류해내기 위해서 각 속성간의 거리에 가중치를 적용하는 k-nearest neighbor 분류법을 사용하였고, 속성 가중치를 동적으로 변화시키는 규칙을 추출하기 위한 방법으로는 결정 트리 생성에 의한 규칙(decision rule) 생성 방법을 적용하였다. 검색결과 향상을 \ulcorner이기 위한 실험으로써 온라인 커플매칭(online couple-matching) 시스템의 핵심부문을 구현하고 이를 적용하였다.

  • PDF

사례기반 추론을 위한 동적 속성 가중치 부여 방법 (A Dynamic feature Weighting Method for Case-based Reasoning)

  • 이재식;전용준
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.47-61
    • /
    • 2001
  • 사례기반 추론과 같은 사후학습 기법은 인공신경망이나 의사결정나무와 같은 사전학습 기법에 비해서 여러 장점을 가지고 있다. 하지만, 사후학습 기법은 사례 표현에 관련성이 적은 속성이 포함된 경우에는 성능이 저하되는 단점을 가지고 있다. 이러한 단점을 극복하기 위해서, 속성 가중치 부여 방법들이 연구되었다. 기존의 속성 가중치 부여 방법들은 대부분 전역적으로 속성 가중치를 부여하는 것이었다. 본 연구에서는 새로운 지역적 속성 가중치 부여 방법인 CBDFW를 제안한다. CBDFW 기법은 무작위로 생성된 속성 가중치들의 분류 성공 여부를 저장하고 있다가, 새로운 사례가 주어졌을 때에 성공적인 분류 결과를 보인 가중치들을 검색하여 동적으로 새로운 가중치들을 생성해낸다. 신용평가 데이터로 CBDFW의 성능을 실험한 결과, 기존의 연구들에서 제시된 분류 적중률보다 우수한 성능을 보였다.

  • PDF

동적 가중치 기반의 연관 서비스 탐사 기법 (An associative service mining based on dynamic weight)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권5호
    • /
    • pp.359-366
    • /
    • 2016
  • 유비쿼터스 환경에서 사용자에게 유용한 서비스를 제공하기 위해서는 시간과 공간을 기반으로 사용자의 행동과 선호 패턴을 고려하여 가장 적합한 데이터를 처리할 수 있는 방법이 필요하다. 실세계에서 사용자의 관심은 시간이 지남에 따라 변화할 수 있다. 그러므로 서비스 관심도의 변화를 중요도에 반영하여 정보를 추출할 수 있는 방법이 필요하다. 이 논문에서는 사용자에게 필요한 서비스 정보를 온톨로지로 설계하고 시간에 따라 동적으로 변화하는 사용자의 서비스 이용 패턴이나 데이터의 중요도를 동적 가중치로 표현하여 빈발 패턴을 찾는 방법을 제안한다. 이 논문에서 제안하는 동적 가중치를 고려하는 빈발 서비스 패턴 마이닝 기법은 시간의 변화에 따라 필요로 하는 사용자의 관심을 서비스의 중요도로 반영하므로 실시간의 최적화된 서비스 제공이 가능하다.

EBP 신경망 학습에서의 동적 초기 가중치 선택에 관한 연구 (A Study on Analysis of Dynamic Generation of Initial Weights in EBP Learning)

  • 김태훈;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.35-38
    • /
    • 2006
  • 다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.

  • PDF

컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법 (A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data)

  • 김영덕;박정희
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.842-853
    • /
    • 2017
  • 스트리밍 데이터는 시간에 따라 지속적으로 생성되는 데이터 시퀀스이다. 시간이 지남에 따라 데이터의 분포 또는 컨셉이 변화할 수 있으며, 이러한 변화는 분류 모델의 성능을 저하시키는 요인이 된다. 점층적 적응적 학습 방법은 컨셉 변화의 정도에 따라 현재 분류 모델의 가중치를 조절하여 업데이트를 수행함으로써 컨셉 변화에 대한 분류 모델의 성능을 유지할 수 있게 한다. 그러나, 컨셉 변화의 정도에 맞는 적절한 가중치를 결정하기가 어렵다는 문제점이 있다. 본 논문에서는 컨셉 변화에 따른 적응적 가중치 조정에 기반한 동적 앙상블 방법을 제안한다. 실험 결과는 제안한 방법이 다른 비교 방법들에 비해 높은 성능을 보여줌을 입증한다.

사례기반 추론에서 사례별 속성 가중치 부여 방법 (A Case-Specific Feature Weighting Method in Case-Based Reasoning)

  • 이재식;전용준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

Xen credit 스케줄러에서의 동적 가중치 할당을 위한 성능 측정 방식 제안 (Performance analysis for dynamic weight allocation of xen credit scheduler)

  • 이태훈;홍철호;유혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(B)
    • /
    • pp.406-409
    • /
    • 2010
  • Xen의 credit 스케줄러는 서버 환경에서 도메인들의 스케줄링을 위해 설계되었다. 서버 환경의 도메인들은 네트워크 및 disk I/O가 워크로드의 대부분을 차지하지만 클라이언트 환경에서는 CPU를 포함한 다양한 워크로드의 비중이 높은 도메인들이 존재한다. 따라서 정적으로 가중치를 할당하는 경우 이러한 클라이언트 환경의 도메인들을 효과적으로 스케줄링 하기 어렵기 때문에 본 논문에서는 가중치를 동적으로 할당하는 방법을 제안하고, 보다 정확한 가중치 할당을 위한 성능 측정 방법을 연구하고자 한다.

  • PDF

자가 적응 시스템에서의 목표 모델의 동적 가중치 변경에 관한 연구 (A Study on dynamic weight-changing method of goal model for self-adaptive system)

  • 황다솜;이종현;이은석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1354-1357
    • /
    • 2011
  • 자가 적응 시스템은 사람의 직접적인 개입 없이 자율 제어를 통한 자가 최적화 (self-optimization), 자가 치유 (self-healing) 등의 능력이 요구되고, 이러한 시스템은 시스템이 조달된 환경과 시스템 내부 상황을 고려한 적절한 적응 정책과 목표 평가를 통해 시스템의 신뢰성을 보장할 수 있어야 한다. 목표 기반의 자가 제어 시스템은 목표 만족도에 따라 시스템을 자율 제어하기 때문에 목표 기반 자가 적응 시스템에서의 목표 만족도(goal satisfaction) 평가는 매우 중요하지만 기존의 연구들의 목표 만족도 평가 방법에서는 환경 변화가 반영되지 않는다는 한계가 있다. 본 논문에서는 목표 모델에서의 상위 목표에 대한 하위 목표들의 기여도에 따라 가중치를 부여하고 시스템의 외부 환경 변화에 따라 가중치를 동적으로 변경하는 방법을 제안한다. 이를 통해 기존의 목표 평가 방법보다 사용자의 요구가 잘 반영되고 신뢰성 높은 평가가 가능하다.