• Title/Summary/Keyword: 동적진단

Search Result 416, Processing Time 0.022 seconds

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

A Design and Performance Evaluation of Semi-active MR Damper for the Smart Control of Construction Structures (건설구조물의 스마트 제어를 위한 준능동 MR 감쇠기의 설계 및 성능평가)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.165-171
    • /
    • 2009
  • This research developed two semi-active MR dampers whose gaps in the orifice area were different from each other, and evaluated their damping performance by loading tests. The Damping performance of MR dampers characteristically depends on various factors like their material and mechanical ones, but most importantly on the size of gap in the orifice area. For this research, we designed the orifice gaps of two dampers as each 1.0mm and 2.0mm, both with the 80mm outer diameter of the orifice. We also designed two loading test sets with different input currents, and acquired different control ability from them. The acquired test results were analyzed and evaluated with their maximum and minimum damping force and also their dynamic range from the force-displacement hysteresis loops and the force-input current relationship curve. This research clearly proved how the damping performance of control devices depends on the gap effect, and also presented a possibility that the two dampers developed in this research could be used for the smart control of construction structures by effectively adapting the input current and the number of coil turns.

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

A Study on Seismic Fragility of PSC Bridge Considering Aging and Retrofit Effects (PSC 교량의 노후도 및 FRP 보강 효과를 고려한 지진취약도 분석)

  • An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.34-41
    • /
    • 2020
  • In recent years, magnitude and frequency of earthquakes have increased in Korea. Damage to a bridge, which is one of the main infrastructures, can directly lead to considerable loss of human lives. Therefore, engineers need to evaluate the seismic fragility of the structure and prepare for the possible seismic damage. In particular, the number of aging bridges over 30 years of service increases, and thus the seismic analysis and fragility requires accounting for the aging and retrofit effects on the bridge. In this study, the nonlinear static and dynamic analyses were performed to evaluate the effects of the aging and FRP retrofit on a PSC bridge. The aging and FRP retrofit were applied to piers that dominate the response of the bridge during earthquakes. The maximum displacement of the bridge increased due to the aging of the pier but decreased when FRP retrofit applied to the aged pier. In addition, seismic fragility analysis was performed to evaluate the seismic behavior of the bridge combined with the seismic performance of the pier. Compared with the aged bridge, the FRP retrofit bridge showed a decrease in the seismic fragility in all levels of damage. The reduction of the seismic fragility in the FRP bridge was prominent as the value of PGA and level of damage increased.

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.

A Study on the Relationship between Body Function and Prelusive Movement to Falls to Promote Wellness in Chronic Stroke Patients (만성뇌졸중 환자의 웰니스 증진을 위한 신체기능과 낙성전조동작의 관련성 연구)

  • Park, Chang-Sik;Kim, Jin-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.181-192
    • /
    • 2021
  • This study was conducted to investigate the effects of a participatory rehabilitation program on sit-rise and rise-to-walk test performances, and perception and motor skills in adults with medically vulnerable individuals and, adults with developmental disabilities in particular. Seventeen adults with developmental disabilities participated in a participatory rehabilitation program using resistance bands and exercise balls, for 60 minutes once weekly over 13 weeks. Their performances were measured before and immediately after the intervention, and 12 weeks after. The findings were as follows. In the sit-rise test, the number of times rising from sitting posture increased after the intervention versus before, but the difference was not statistically significant. In the rise-to-walk test, the performance showed statistically significant difference over time, and the post-hoc test showed a significant effect after the intervention versus before. There was no significant difference in perception and motor skills. In sum, the participatory rehabilitation program positively influenced dynamic balancing related to functional activities but had no significant effect on perception and motor skills, which is related to motor control and motor learning. It is suggested that to increase the participation in community activities, reduce fall risk, and improve dynamic balancing abilities in adults with developmental disabilities, participatory rehabilitation programs should be utilized to promote the physical wellbeing.

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

Detection of Denitrification Completion Using Pattern Matching Method in Sequencing Batch Reactor(SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 탈질완료 감지 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.944-949
    • /
    • 2007
  • The profiles of on-line sensors such as DO, ORP and pH can provide useful information about pollutant removal reaction in sequencing batch reactor. For detection of denitrification completion, the nitrate hee point from ORP profile has been considered as a main indicator of denitrification completion. However, many researchers pointed out that the nitrate knee usually disappeared been the progress of denitrification is so fast and it makes the fault at detection of denitrification completion. In this paper, dynamic time warping(DTW) method and discriminant analysis were used to detect and isolate the profiles of two cases, denitrification completed and uncompleted. As the results, proposed methods can detect state of denitrification successfully.

Dynamic Monitoring Framework and Debugging System for Embedded Virtualization System (가상화 환경에서 임베디드 시스템을 위한 모니터링 프레임워크와 디버깅 시스템)

  • Han, Inkyu;Lim, Sungsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.792-797
    • /
    • 2015
  • Effective profiling diagnoses the failure of the system and informs risk. If a failure in the target system occurs, it is impossible to diagnose more than one of the exiting tools. In this respect, monitoring of the system based on virtualization is useful. We present in this paper a monitoring framework that uses the characteristics of hardware virtualization to prevent side-effects from a target guest, and uses dynamic binary instrumentation with instruction-level trapping based on hardware virtualization to achieve efficiency and flexibility. We also present examples of some applications that use this framework. The framework provides tracing of guest kernel function, memory dump, and debugging that uses GDB stub with GDB remote protocol. The experimental evaluation of our prototype shows that the monitoring framework incurs at most 2% write memory performance overhead for end users.