• Title/Summary/Keyword: 동적증가계수

Search Result 211, Processing Time 0.024 seconds

Temperature-Dependent Viscoplastic-Damage Constitutive Model for Nonlinear Compressive Behavior of Polyurethane Foam (폴리우레탄 폼 비선형 압축 거동 해석용 온도 의존 손상 점소성 구성방정식)

  • Lee, Jeong-Ho;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.437-445
    • /
    • 2016
  • Recently, polyurethane foam has been used in various industry fields to preserve temperature environment of structures, and a wide range of loads from the static to the dynamic are imposed on the material during a life period. The biggest characteristic of polyurethane foam is porosity as being polymeric material, and it is generally known that insulation performance of the material strongly depends on internal void size. In addition, polyurethane foam's mechanical behavior has high dependence on strain rate and temperature as well as being highly non-linear ductile for compression. In the non-linear compressive behavior, volume fraction of voids and elastic modulus decrease as strain increases. Therefore, in this study, temperature-dependent viscoplastic-damage constitutive model was developed to describe the non-linear compressive behavior with the aforementioned features of polyurethane foam.

A Study on the Speed Performance of a Medium Patrol Boat using CFD (CFD를 이용한 중형 경비정의 속도성능 평가)

  • Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.585-591
    • /
    • 2014
  • The primary objective of the current work is to predict speed performance of the medium patrol boat over $F_N=0.5$ employing experimental materials based on the CFD before model tests. In other words, the predicted brake powers according to ship speeds are assessed satisfying the main engine capacity. The subject ships are selected the two different stern hull forms. The flow computation are conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The resistances of the bare-hull are obtained from CFD. Wave patterns, pressures and limiting streamlines on the hull and velocity distribution in the propeller plane for the two hull forms are compared using CFD. The effective powers of the object ships are assessed based on CFD. Resistance increase according to the attached appendages and quasi-propulsive efficiency are employed the experimental datas. Speed performance prediction method concerning high speed vessels like a medium patrol boat is developed employing CFD and experimental data.

Behavior and Script Similarity-Based Cryptojacking Detection Framework Using Machine Learning (머신러닝을 활용한 행위 및 스크립트 유사도 기반 크립토재킹 탐지 프레임워크)

  • Lim, EunJi;Lee, EunYoung;Lee, IlGu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1105-1114
    • /
    • 2021
  • Due to the recent surge in popularity of cryptocurrency, the threat of cryptojacking, a malicious code for mining cryptocurrencies, is increasing. In particular, web-based cryptojacking is easy to attack because the victim can mine cryptocurrencies using the victim's PC resources just by accessing the website and simply adding mining scripts. The cryptojacking attack causes poor performance and malfunction. It can also cause hardware failure due to overheating and aging caused by mining. Cryptojacking is difficult for victims to recognize the damage, so research is needed to efficiently detect and block cryptojacking. In this work, we take representative distinct symptoms of cryptojacking as an indicator and propose a new architecture. We utilized the K-Nearst Neighbors(KNN) model, which trained computer performance indicators as behavior-based dynamic analysis techniques. In addition, a K-means model, which trained the frequency of malicious script words for script similarity-based static analysis techniques, was utilized. The KNN model had 99.6% accuracy, and the K-means model had a silhouette coefficient of 0.61 for normal clusters.

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Ambient Vibration Testing and System Identification for Tall Buildings (고층건물의 자연 진동실험 및 시스템판별)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-33
    • /
    • 2012
  • Dynamic response measurements from natural excitation were carried out for three 18-story office buildings to determine their inherent properties. The beam-column frame system was adopted as a typical structural form, but a core wall was added to resist the lateral force more effectively, resulting in a mixed configuration. To extract modal parameters such as natural frequencies, mode shapes and damping ratios from a series of vibration records at each floor, the most advanced operational system identification methods based on frequency- and time-domain like FDD, pLSCF and SSI were applied. Extracted frequencies and mode shapes from the different identification methods showed a greater consistency for three buildings, however the three lower frequencies extracted were 1.2 to 1.7 times as stiff as those obtained using the initial FE models. Comparing the extracted fundamental periods with those estimated from the code equations and FE analysis, the FE analysis results showed the most flexible behavior, and the most simple equation that considers the building height as the only parameter correlated fairly well with test results. It is recognized that such a discrepancy arises from the fact that the present tests exclude the stiffness decreasing factors like concrete cracking, while the FE models ignore the stiffness increasing factors, such as the contribution of non-structural elements and the actual material properties used.

Conceptual Design of a Riser for 10 MW OTEC (10MW급 해양온도차발전을 위한 라이저 개념설계)

  • Jung, Dongho;Kwon, Yongju;Kim, Hyeonju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The concept design of a riser for Ocean Thermal Energy Conversion in 10 MW is proposed and its dynamic behaviour characteristics is analyzed with numerical method. A riser pipe with a hollow along its thickness in the cross-section to increase the effective modulus of its cross-section is designed considering the manufacture. The riser pipe without hollows along its thickness needs a lumped weight at the bottom end of a riser in order to keep its vertical hanging configuration from large buoyancy and the strong current. The riser is designed to control its density by inserting materials in high or low density into a hollow. The dynamic behaviour characteristics of the two designed risers is evaluated with the developed numerical analysis tool. The combined stress of the riser with a lumped weight is showed to be dominated by weight of a lumped mass. The riser with no hollow shows large combined stress near sea surface by strong current. Local structural analysis for the cross-section of a hollow riser is needed in detail.

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

A Study on Recovery from Potentially Lethal Damage Induced by $\gamma-Irradiation$ in Plateau-phase Vero Cells in vitro (평형기의 Vero세포계에서 방사선($\gamma$-선) 조사 후 발생한 잠재치사 손상의 회복에 관한 연구)

  • Kim, Il-Han;Choi, Eun-Kyung;Ha, Sung-Whan;Park, Charn-Il;Cha, Chang-Yong
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • Recovery from potentially lethal damage (PLDR) after irradiation was studied in plateau-phase culture of Vero cells in vitro. Unfed plateau-phase cells were irradiated with dose of 1 to 9Gy using Cs-137 irradiator. Cells then were incubated again and left in situ for 0, 1, 2, 3, 4, 5, 6, and 24 hours and then were trypsinized explanted, and subcultured in fresh RPMI-1640 media containing $0.33\%$ agar. Cell survival was measured by colony forming ability. An adequate number of heavily irradiated Vero cells were added as feeder cells to make the total cell number constant in every culture dish. As the postirradiation in situ incubation time increased, surviving fraction increased by PLDR. The rate of PLDR was so rapid that increased surviving fraction reached saturation level at 2 to 4 hours after in situ incubation. As the radiation dose increased, the rate of PLDR fastened and the magnitude of increased surviving fraction at saturation level by PLOR also increased. In analysis of cell survival curve fitted to the linear-quadratic model, the linear inactivation coefficient $(\alpha)$ decreased largely and reached nearly to zero but the quadratic inactivation coefficient $(\beta)$ increased minimally by increment of postirradiation in situ incubation time. So PLDR mainly affected the damage expressed as $\alpha$, In the multitarget model, significant change was not obtained in $D_0\;but\;in D_q$. Therefore, shoulder region in cell survival curve was mainly affected by PLDR and terminal slope was not influenced at all. And dose-modifying factor by PLDR was relatively higher in shoulder region, that is, in low dose area below 3 Gy.

  • PDF

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.