• Title/Summary/Keyword: 동적유한요소해석

Search Result 715, Processing Time 0.033 seconds

Study on Application of Isogeometric Analysis Method for the Dynamic Behavior Using a Reduced Order Modeling (축소 모델의 동적 거동 해석을 위한 등기하해석법 적용에 대한 연구)

  • Kim, Min-Geun;Kim, Soo Min;Lee, Geun-Ho;Lee, Hanmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.275-282
    • /
    • 2018
  • Using isogeometric analysis(IGA) gives more accurate results for higher order mode in eigenvalue problem than using the finite element method(FEM). This is because the FEM has $C^0$ continuity between elements, whereas IGA guarantee $C^{P-1}$ between elements for p-th order basis functions. In this paper, a mode based reduced model is constructed by using IGA and dynamic behavior analysis is performed using this advantage. Craig-Bampton(CB) method is applied to construct the reduced model. Several numerical examples were performed to compare the eigenvalue analysis results for various order of element basis function by applying the IGA and FEM to simple rod analysis. We have confirmed that numerical error increases in the higher order mode as the continuity between elements decreases in the IGA by allowing internal knots multiplicity. The accuracy of the solution can be improved by using the IGA with high inter-element continuity when high-frequency external force acts on the reduced model for dynamic behavior analysis.

Dynamic Analysis of Cantilevered Curved Beam using Model Analysis Method (모우드 해석법을 이용한 캔틸레버 곡선보의 동적해석)

  • Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.55-62
    • /
    • 2007
  • The Paper presents three methods for calculating the natural frequencies of cantilevered curved Beams. A summary is given of the development of two techniques: theoretic value and the result of the experiment. Theoretic value of curved beam vibration analysis are derived from complementary variational principles assuming as unknown stress-displacement result fields. In order to perform free vibration analysis of curved beam, Aluminum-made cantilevered curved beam is used in experiment. Experimental input and output signals are derived from the impact hammer and the one accelemeter are amplificated by an amplifier. The validity of the modal analysis method

  • PDF

Finite Element Analysis of Harmonics Generation by Cracks (균열의 고조파 발생에 대한 유한요소해석)

  • Yang, Seung-Yong;Kim, Noh-Yu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.573-577
    • /
    • 2009
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. In this paper, using finite element analysis, displacements round a inclined crack were obtained for 4 different inclination angles. Fourier transformation is applied to the results to research the frequency characteristics depending on the various locations around the crack. 2-dimensional plane stress model is considered, and finite element software ABAQUS/Explicit is used.

Two-Dimensional Infinite Element for Dynamic Analysis of Saturated Two-Phase Soil (포화된 2상 지반의 동적해석을 위한 2차원 무한요소)

  • Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.67-74
    • /
    • 2005
  • This paper presents a new infinite element for modeling far-field region in dynamic analysis of a fluid-saturated two-phase medium. The infinite element method combined to the infinite element method has been effectively applied to several engineering problems where the full space or half-space medium should be modeled. However, the currently available infinite element for dynamic analysis of two-phase porous medium has a limitation that Pl and P2 waves can only be Included in shape function expressing behavior ol the body. In this paper, the infinite element method is extended to simulate arbitrary number of multi-component waves. For this purpose, the far-field of the porous medium is assumed to be a layered half-space, while the near-field Includes structures as well as irregular soil medium. The accuracy and effectiveness of the proposed element have demonstrated using 1-D and 2-D wave propagation problems.

Seismic Performance Evaluation of Base-Isolated Multi-Story Piping System (지진격리된 복층구조 파이핑 시스템의 내진성능평가)

  • Jeon, Jun-Tai;Ryu, Yong-Hee;Ju, Bu-Seog
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.311-313
    • /
    • 2016
  • 본 연구는 지진격리장치가 적용된 파이핑 시스템에서 빌딩과 같은 구조요소의 상호작용에 의한 동적 거동을 분석하고자 기존 복층구조 파이핑 시스템과 빌딩시스템에 triple friction pendulum이 적용된 격리장치를 적용 하였다. 파이핑 시스템의 시간이력해석에 의한 동적거동 평가를 위해 OpenSees를 이용하여 지진격리된 빌딩 및 파이핑시스템의 수치해석모델을 구축하였으며, 또한 파이핑시스템의 경우 ceiling system and supporting system 등과 같은 요소로 구분하여 유한요소모델을 구축하였다. 결과적으로 지진격리장치가 적용된 빌딩-파이핑 시스템의 경우 각층의 drift 및 변위가 일정한 반면 비 적용된 시스템의 경우 층 가속도에 의한 구조물의 변위가 빌딩층에 따라 상당히 증가함을 볼 수 있다.

  • PDF

Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space (비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.

Dynamic Characteristics of Anisotropic Laminated Plates (이방성 복합재료의 동적특성에 관한 연구)

  • Park, Sungjin;Baek, Jooeun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • In this study, the impact problems are brought up and the formulation by isoparametric element is attempted for the purpose of analyzing the response characteristics of laminated plate receiving impact load based on the first-order shear deformation theory expanded from the Mindlin plate theory. The result of static analysis and dynamic analysis is drawn through the numerical analysis rectangular and circular plates of antisymmetric Angle-Ply laminated plate using the finite element method and the analysis on each displacement is compared.

Blast Performance Evaluation based on Finite Element Analysis for Reinforced Concrete Columns with Shear and Flexure Failure Modes (유한요소해석 기반 휨 및 전단 파괴형 철근콘크리트 기둥의 폭발 성능평가)

  • Ye-Eun Kim;Quoc To Bao;Kihak Lee;Jiuk Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.307-314
    • /
    • 2023
  • This study aims to evaluate the blast performance of shear and flexure failure modes of reinforced concrete columns using finite-element analyses. To accomplish this goal, finite-element models of flexure- and shear-governed columns were developed and validated using previous experimental results. A blast simulation model was developed using a coupling-modeling method, and the modeling method was applied to the validated-column models. Blast responses were obtained for various blast loading scenarios, and the blast performance was determined using limits based on ductility and axial loading capacity.

Application of the Unstructured Finite Element to Longitudinal Vibration Analysis (종방향 진동해석에 비구조적 유한요소 적용)

  • Kim Chi-Kyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.39-46
    • /
    • 2006
  • This paper analyzes the continuous Galerkin method for the space-time discretization of wave equation. The method of space-time finite elements enables the simple solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period called a time slab. The weighted residual process is used to formulate a finite element method for a space-time domain. Instability is caused by a too large time step in successive time steps. A stability problem is described and some investigations for chosen types of rectangular space-time finite elements are carried out. Some numerical examples prove the efficiency of the described method under determined limitations.

Static and Dynamic Finite Element Analyses of a Bulk-Cement Trailer (벌크 시멘트 트레일러의 정동적 유한요소해석)

  • Kim, Jin-Gon;Lee, Jae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.945-951
    • /
    • 2012
  • In this study, we analyze the static and dynamic characteristics of a bulk-cement trailer with a simpler structure that carries powders. The commercial software ANSYS is used to prepare a detailed three-dimensional model of the chassis frame and tank body that bear most of the load of a bulk-cement trailer for the finite element analysis. Modal analysis is conducted to examine the dynamic characteristics of the trailer body, and static analysis shows weak links in the structure. Finally, we propose a method to increase the strength of vulnerable areas and to reduce the weight of the trailer by applying the Taguchi method.