• Title/Summary/Keyword: 동적오염분석

Search Result 53, Processing Time 0.025 seconds

An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling (상세 모델링을 통한 RDX 연소 동특성 분석)

  • Kim, Shin-Hyuk;Yeom, Gi-Hwoen;Moon, Il;Chae, Joo-Seung;Kim, Hyeon-Soo;Oh, Min
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.398-405
    • /
    • 2014
  • In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explosives. Due to the fact that high energetic materials encompass various types and their different characteristics, the technology development dealing with various materials is not an easy task. In this study, rigorous modeling and dynamic simulation was carried out to predict dynamic physico-chemical phenomena for research department explosive (RDX). Plug flow reactor was employed to describe the incinerator with 263 elementary reactions and 43 chemical species. Simulation results showed that safe operations can be achieved mainly by controlling the reactor temperature. At 1,200 K, only thermal decomposition (combustion) occurred, whereas increasing temperature to 1,300 K, caused the reaction rates to increase drastically, which led to ignition. The temperature further increased to 3,000 K which was the maximum temperature recorded for the entire process. Case studies for different operating temperatures were also executed and it was concluded that the modeling approach and simulation results will serve as a basis for the effective design and operation of RDX incinerator.

Preservation Conditions of Aqueous Samples Containing silver Nanomaterials (은나노물질을 포함한 수질시료의 보관조건)

  • Kang, Mun Hee;Park, Sol;Lee, Sang-Woo;Kim, Hyun-A;Lee, Byung-Tae;Eom, Ig-Chun;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.218-227
    • /
    • 2015
  • A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF