• 제목/요약/키워드: 동적신경망

검색결과 258건 처리시간 0.025초

필기체 문자 영상의 이진화에 관한 연구 (A Study on Binarization of Handwritten Character Image)

  • 최영규;이상범
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권5호
    • /
    • pp.575-584
    • /
    • 2002
  • 온라인 필기체 문자 인식은 필기의 순서와 획의 위치를 알 수 있어 신경망을 이용한 자소의 효과적인 분할로 큰 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 동적인 정보와 시간적인 정보를 가지고 있지 않고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 불완전한 전처리를 수행하여야 하는 어려움을 가지고 있다. 따라서 오프라인 필기체 문자 인식은 다양한 방법의 연구가 필요하다. 본 논문에서는 Watershed 알고리즘을 오프라인 필기체 한글 문자 인식 전처리에 적용하였다. 여기서 Watershed 알고리즘의 수행 시간과 결과 영상의 품질을 고려해 Watershed 알고리즘 4단계에서 효과적인 적용방법을 제시하였다. 효과적으로 구성된 Watershed 알고리즘을 전처리에 적용함으로써 영상 향상과 이진화에 좋은 결과를 얻었다. 실험에서는 기존의 방법과 본 논문 방법을 수행 시간과 품질로써 평가했다. 실험 결과 기존의 방법은 평균 2.08초, 본 논문 방법은 평균 0.86초의 수행 시간이 걸렸다. 결과 영상의 품질은 본 논문 방법이 기존의 방법에 비하여 문자의 획 사이의 잡영을 효과적으로 처리하였다.

  • PDF

서장 우편물 자동처리를 위한 우편영상 인식 시스템 (Postal Envelope Image Recognition System for Postal Automation)

  • 김호연;임길택;김두식;남윤석
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.429-442
    • /
    • 2003
  • 본 논문에서는 우편물 자동처리론 위한 우편영상 인식 시스템을 소개한다. 우편영상 인식 시스템은 서장 우편물을 집배원이 배달하는 순서에 따라 자동으로 구분할 수 있도록 우편영상을 입력으로 받아 수신인 주소를 출력하는 인식 시스템을 말한다. 이 시스템은 수신인 주소영역 추출, 문자열 분리, 문자분할, 문자인식, 그리고 주소해석 모듈로 구성되어 있다. 주소영역 추출을 위해서는 우편물 주소 기입 위치에 대한 경험적 지식을 이용하였으며, 문자열 분리와 문자분한을 위해서는 연결요소 분석과 수직런 분석을 이용하였다. 문자인식에는 신경망 기반 인식기를 이용하였으며, 주소해석을 위해서는 동적 프로그래밍 기법을 적용하였다. 각 모듈은 독립적으로 구현되었기 때문에 인식 시스템의 성능 개선을 위한 모듈별 최적화가 용이하다는 장점이 있다. 실험에는 대전 유성우체국의 우편물 구분기를 이용하여 실제 우편물에서 수집한 인쇄 우편영상과 필기 우편영상을 이용하였으며, 비교적 우수한 인식 결과를 얻었다.

Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발 (Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS)

  • 류승규;이승재;안우영
    • 대한교통학회지
    • /
    • 제23권7호
    • /
    • pp.149-158
    • /
    • 2005
  • 기존의 최적경로 알고리즘은 통행거리 통행시간, 통행량 등의 통행값을 통하여 최적경로를 제공하였다. 하지만 이렇게 제시된 최적경로는 사용자의 도로에 대한 인지도를 고려하지 않음으로써 자신이 인지하거나 다수의 사용자가 선호하는 경로를 고려하지 못하는 단점이 있었다. 따라서 본 연구에서는 통행거리와 통행시간을 고려하면서 사용자의 인지도를 고려한 최적경로를 개발하는 것이 본 연구의 목적이다. 기존의 통행시간 예측방법에는 ARIMA모형, Kalman Filter모형, 확률과정모형, 신경망모형, 회귀모형 등 여러 가지 방법이 있으나 본 연구에서는 단기 통행시간 예측에 적합한 Kalman Filter 모형을 적용하였다. 인지도를 고려한 최적 경로를 제공하기 위한 기존의 방법은 회전에 대한 가중치를 부여하여 최적경로 탐색시 최소한의 회전을 유도하고 있다. 하지만 회전에 대한 가중치를 주는 방법은 경험적인 방법으로서 만약 신설된 길에 대한 경로 제공, 또는 개량된 길에 대한 경로를 제공할 때 문제점이 나타난다. 본 연구에서는 이 같은 문제점을 해결하고자 공간구조의 속성을 정량적으로 분석하고 평가하는 기법인 Space Syntax 이론을 적용하였다. 운전자들을 대상으로 실시한 설문조사 결과 본 연구에 의한 알고리즘이 기존의 최적 경로보다 더 선호하는 것으로 나타났다.

스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식 (Deep Learning-based Action Recognition using Skeleton Joints Mapping)

  • 타스님;백중환
    • 한국항행학회논문지
    • /
    • 제24권2호
    • /
    • pp.155-162
    • /
    • 2020
  • 최근 컴퓨터 비전과 딥러닝 기술의 발전으로 비디오 분석, 영상 감시, 인터렉티브 멀티미디어 및 인간 기계 상호작용 응용을 위해 인간 행동 인식에 관한 연구가 활발히 진행되고 있다. 많은 연구자에 의해 RGB 영상, 깊이 영상, 스켈레톤 및 관성 데이터를 사용하여 인간 행동 인식 및 분류를 위해 다양한 기술이 도입되었다. 그러나 스켈레톤 기반 행동 인식은 여전히 인간 기계 상호작용 분야에서 도전적인 연구 주제이다. 본 논문에서는 동적 이미지라 불리는 시공간 이미지를 생성하기 위해 동작의 종단간 스켈레톤 조인트 매핑 기법을 제안한다. 행동 클래스 간의 분류를 수행하기 위해 효율적인 심층 컨볼루션 신경망이 고안된다. 제안된 기법의 성능을 평가하기 위해 공개적으로 액세스 가능한 UTD-MHAD 스켈레톤 데이터 세트를 사용하였다. 실험 결과 제안된 시스템이 97.45 %의 높은 정확도로 기존 방법보다 성능이 우수함을 보였다.

Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측 (Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model)

  • 김유일
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

손 제스터 인식을 이용한 실시간 아바타 자세 제어 (On-line Motion Control of Avatar Using Hand Gesture Recognition)

  • 김종성;김정배;송경준;민병의;변증남
    • 전자공학회논문지C
    • /
    • 제36C권6호
    • /
    • pp.52-62
    • /
    • 1999
  • 본 논문에서는 가상 환경에서 움직이는 인체 Avatar의 움직임을 인간의 가장 자연스러운 동작의 하나인 손 제스처를 이용하여 실시간으로 제어하는 인식 시스템의 구현에 관하여 상술한다. 동적 손 제스처는 컴퓨터와 제스처를 사용하는 사람과의 상호 연결 수단이다.가상공간 상에서의 자연스러운 움직임을 표현하기 위해 32개의 자유도(DOF)를 가진 인체 아바타를 구성하였으며, 정지, 전후좌우로 한 걸음 이동, 걷기, 달리기, 좌우로 회전, 뒤로 돌기, 물건 잡기의 동작 모드를 정의하여 가상공간 상의 인체 아바타는 미리 설정된 손 제스처에 따라 실시간에 따라 실시간으로 3차원공간상에서 움직일 수 있다. 실시간의 인체 아바타 이동에는 역 기구학과 기구학을 혼용하여 적용하였으며, 사이버 터치를 착용한 사용자의 손 제스처 인식에는 인공 신경망 이론과 퍼지 이론을 도입하여 실시간 인식이 가능하였다.

  • PDF

명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식 (Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm)

  • 김광백;김영주
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.379-387
    • /
    • 2001
  • 본 논문은 그레이 명암도 변화와 HSl 컬러 모형의 Hue 정보를 함께 이용한 번호판 영역 추출 방법을 제안한다. 차량 이미지에서 차량 번호판 추출은 명암도 변화를 이용하여 번호판 후보 영역을 추출하고 후보 영역에 대해 HSI 컬러 모형의 Hue 정보를 이용하여 실제 번호판 영역을 결정한다. 추출된 번호판 영역으로부터 문자를 포함하는 특징 영역 추출은 각 문자들에 대한 히스토그램을 이용하여 추출한다. 그리고 Yager의 합접속 연산자를 이용하여 경계 변수 값을 동적으로 변화시키는 개선된 ART2 알고리즘을 제안하고 번호판의 개별 문자 인식에 적용한다. 또한 개선된 ART2와 지도 학습 방법을 통합한 SOSL 알고리즘을 제안한다. 100개의 실제 차량 이미지를 이용한 실험 결과를 통해 제안된 번호판 영역 추출 방법이 단일 컬러 모형을 적용한 기존 추출 방법보다 추출률이 향상되었고, 개선된 알고리즘들이 기존의 ART2 알고리즘과 오류 역전파 알고리즘 보다 더 높은 인식률을 보임을 알 수 있었다.

  • PDF

RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가 (Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.774-779
    • /
    • 2020
  • 본 논문에서는 RNN 순환 신경망 (Recurrent Neural Network) 모델을 사용하여 스마트 중간층 면진 시스템의 지진 응답 제어 성능을 수치 해석을 통하여 검토하였다. 이를 위해서 지진 하중을 받는 건물의 동적 지진 응답 예측을 위한 RNN 모델을 개발하였다. 보다 실제적인 연구를 위하여 중간층 면진 시스템이 설치된 실존하는 건물인 시오도메 스미토모 건물을 예제 구조물로 선택하였다. 스마트 중간층 면진 시스템은 기존의 납 댐퍼를 대신하여 MR (Magnetorheological) 댐퍼를 사용하여 구성하였다. 그 외 고무 베어링이나 강재 댐퍼는 그대로 사용 하였다. 수치 해석을 통하여 개발된 RNN 모델이 기존의 FEM (Finite Element Method) 모델과 비교해서 매우 정확한 응답을 예측하는 것을 확인할 수 있었다. RNN 모델을 사용하면 자유도가 많은 FEM 모델을 사용한 경우에 비하여 해석 시간을 대폭 줄일 수 있다. 개발된 RNN 모델을 사용한 수치 해석 결과 스마트 중간층 면진 시스템이 기존의 수동 중간층 면진 시스템에 비하여 구조물의 지진 응답을 대폭 저감시킬 수 있는 것을 확인할 수 있었다.

Type-2 Fuzzy logic에 기반 한 고속 항공기의 횡 운동 제어 (Lateral Control of High Speed Flight Based on Type-2 Fuzzy Logic)

  • 송진환;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.479-486
    • /
    • 2013
  • 항공기의 제어 시스템 설계에 있어 두 가지 어려움이 있다. 즉 항공기의 동적 특성이 비선형 특성을 갖고 있고 그 파라미터 값들이 시간 혹은 비행 조건에 따라 변화하는 시변 특성을 갖고 있다는 점이다. 그럼에도 불구하고 고전적인 제어 이론을 활용한 신뢰성 높고 효율적인 제어 기법들이 계속 개발되어 왔으나 정확한 이론적 분석이 수반되지 않으면 항공기의 성능, 강건성, 그리고 안전성조차도 확보하기 어려운 문제점을 갖는다. 이에 최근에는 퍼지 논리, 신경망, 유전자 알고리즘으로 대표되는 지능 제어 기법을 활용한 항공기 제어 시스템 개발이 시도 되고 있다. 본 논문에서는 기존의 퍼지 논리가 갖고 있는 불확실성에 대한 취약점들을 크게 감소시킬 수 있는 Interval Type-2 퍼지 논리 이론을 기반으로 고속 항공기의 지능형 비행 횡 제어 시스템을 개발하고 컴퓨터 모의실험에 의해 그 효용성을 입증한다.

Mirror Neuron System 계산 모델을 이용한 모방학습 기반 인간-로봇 인터페이스에 관한 연구 (A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.565-570
    • /
    • 2013
  • 영장류 대뇌 피질 영역 중 거울 뉴런들이 분포한 것으로 추정되는 몇몇 영역은 목적성 행위에 대한 시각 정보를 기반으로 모방학습을 수행함으로써 관측 행동의 의도 인식 기능을 담당한다고 알려졌다. 본 논문은 이러한 거울 뉴런 영역을 모델링 하여 인간-로봇 상호작용 시스템에 적용함으로써, 자동화 된 의도인식 시스템을 개발하고자 한다. 거울 뉴런 시스템 계산 모델은 동적 신경망을 기반으로 구축하였으며, 모델의 입력은 객체와 행위자 동작에 대한 연속된 특징 벡터 집합이고 모델의 모방학습 및 추론과정을 통해 관측자가 수행할 수 있는 움직임 정보를 출력한다. 이를 위해 제한된 실험 공간 내에서 특정 객체와 그에 대한 행위자의 목적성 행동, 즉 의도에 대한 시나리오를 전제로 키넥트 센서를 통해 모델 입력 데이터를 수집하고 가상 로봇 시뮬레이션 환경에서 대응하는 움직임 정보를 계산하여 동작을 수행하는 프레임워크를 개발하였다.