• Title/Summary/Keyword: 동적분류

Search Result 536, Processing Time 0.029 seconds

Personalized I-Mail Classification System Using Dynamic Thesaurus and Genetic Algorithm (동적 시소러스와 GA을 이용한 개별화된 E-Mail1 분류시스템 (PECS))

  • 안희국;노희영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.472-474
    • /
    • 2002
  • 본 논문에서는 전자메일을 사용자 적합도(선호도)를 기준으로 분류하기 위한 구조를 제안한다. 분류는 1차 분류와 2차 분류로 나눠지는데, 1차 분류에서는 사용자 적합도를 판단하기 위해 사용자 관련 정보로부터 동적 시소러스를 구축하고, 구축된 시소러스와의 비교를 통해 사용자에게 유용한 메일인지 아닌지를 결정하고, 2차 분류에서는 사용자가 지정한 폴더키워드를 중심으로 사용자 시소러스로부터 유전자 알고리즘을 이용해 추출한 키워드들과의 적합도 비교를 통해서 특정 폴더로의 분류가 이뤄지게 된다 테스트에는 메일 정보값(Mail Information Word)을 추출하기 위해 HAM(Hangup Analysys Module)을 포함하는 메일정보추줄 에이전트를 사용하였고, mail의 subject와 본문(body)로부터 추출된 16개의 word정보와 시소러스 적합도 정보, 분류 적합도 정보를 하나의 데이터구조로 사용하였다. 이러한 통할된 시스템 구조와 data structure를 이용해 mail을 사용자의 선호도에 따라. 1차와 2차에 걸친 분류시 분류가 사용자 선호도에 근접하게 이루어 질 수 있음을 확인하였다.

  • PDF

Reconstruction of E-mail Category Using Dynamic Category Hierarchy and Document Summarization (문서요약 및 동적 분류체계를 사용한 E-mail 분류의 재구성)

  • Ahn, Chan-Min;Park, Sun;Kim, Tae-Soon;Choi, Bum-ghi;Lee, Ju-Hong
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.511-514
    • /
    • 2004
  • 현재의 이메일 분류는 규칙기반, 베이시안, SVM 등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되어지고 있고, 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있다. 그러나 클러스터링에 의한 방법은 단순히 유사도에 의해 메일을 묶는 수준에 그치고 있다. 본 논문에서는 자동 문서요약 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 다원분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 분류하며 분류한 결과를 검색할 때 사용자의 요구사항을 만족하지 못하면 재분류하여 분류 빛 검색의 정확성을 높였다.

  • PDF

Automatic e-mail Hierarchy Classification using Dynamic Category Hierarchy and Principal Component Analysis (PCA와 동적 분류체계를 사용한 자동 이메일 계층 분류)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.419-425
    • /
    • 2009
  • The amount of incoming e-mails is increasing rapidly due to the wide usage of Internet. Therefore, it is more required to classify incoming e-mails efficiently and accurately. Currently, the e-mail classification techniques are focused on two way classification to filter spam mails from normal ones based mainly on Bayesian and Rule. The clustering method has been used for the multi-way classification of e-mails. But it has a disadvantage of low accuracy of classification and no category labels. The classification methods have a disadvantage of training and setting of category labels by user. In this paper, we propose a novel multi-way e-mail hierarchy classification method that uses PCA for automatic category generation and dynamic category hierarchy for high accuracy of classification. It classifies a huge amount of incoming e-mails automatically, efficiently, and accurately.

  • PDF

Real-time face detection and tracking using hierarchical classifier (계층적 분류기를 이용한 실시간 얼굴 검출 및 추적)

  • Kim, Su-Hui;Yang, Chang-Ho;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.497-500
    • /
    • 2003
  • 본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.

  • PDF

A Classification Model Supporting Dynamic Features of Product Databases (상품 데이터베이스의 동적 특성을 지원하는 분류 모형)

  • Kim Dongkyu;Lee Sang-goo;Choi Dong-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.165-178
    • /
    • 2005
  • A product classification scheme is the foundation on which product databases are designed, and plays a central role in almost all aspects of management and use of product information. It needs to meet diverse user views to support efficient and convenient use of product information. It needs to be changed and evolved very often without breaking consistency in the cases of introduction of new products, extinction of existing products, class reorganization, and class specialization. It also needs to be merged and mapped with other classification schemes without information loss when B2B transactions occur. For these requirements, a classification scheme should be so dynamic that it takes in them within right time and cost. The existing classification schemes widely used today such as UNSPSC and eCl@ss, however, have a lot of limitations to meet these requirements for dynamic features of classification. Product information implies a plenty of semantics such as class attributes like material, time, place, etc., and integrity constraints. In this Paper, we analyze the dynamic features of product databases and the limitation of existing code based classification schemes, and describe the semantic classification model proposed in [1], which satisfies the requirements for dynamic features of product databases. It provides a means to explicitly and formally express more semantics for product classes and organizes class relationships into a graph.

Deep learning based Person Re-identification with RGB-D sensors

  • Kim, Min;Park, Dong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • In this paper, we propose a deep learning-based person re-identification method using a three-dimensional RGB-Depth Xtion2 camera considering joint coordinates and dynamic features(velocity, acceleration). The main idea of the proposed identification methodology is to easily extract gait data such as joint coordinates, dynamic features with an RGB-D camera and automatically identify gait patterns through a self-designed one-dimensional convolutional neural network classifier(1D-ConvNet). The accuracy was measured based on the F1 Score, and the influence was measured by comparing the accuracy with the classifier model (JC) that did not consider dynamic characteristics. As a result, our proposed classifier model in the case of considering the dynamic characteristics(JCSpeed) showed about 8% higher F1-Score than JC.

Doppler Velocity-based Dynamic Object Tracking and Rejection for Increasing Reliability of Radar Ego-Motion Estimation (레이더 에고 모션 추정 신뢰성 향상을 위한 도플러 속도 기반 동적 물체 추적 및 제거)

  • Park, Yeong Sang;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.218-232
    • /
    • 2022
  • Researches are underway to use a radar sensor, a sensor used for object recognition in vehicles, for position estimation. In particular, a method of classifying dynamic and static objects using the Doppler velocity, the output from the radar sensor, and calculating ego-motion using only static objects has been researched recently. Also, for the existing dynamic object classification, several methods using RANSAC or robust filtering has been proposed. Still, a classification method with higher performance is needed due to the nature of the position estimation, in which even a single failure causes large effects. Hence, in this paper, we propose a method to improve the classification performance compared to existing methods through tracking and filtering of dynamic objects. Additionally, the method used a GMPHD filter to maximize tracking performance. In effect, the method showed higher performance in terms of classification accuracy compared to existing methods, and especially shows that the failure of the RANSAC could be prevented.

A Hybrid Value Predictor using Static and Dynamic Classification in Superscalar Processors (슈퍼스칼라 프로세서에서 정적 및 동적 분류를 사용한 혼합형 결과 값 예측기)

  • 김주익;박홍준;조영일
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.569-578
    • /
    • 2003
  • Data dependencies are one of major hurdles to limit ILP(Instruction Level Parallelism), so several related works have suggested that the limit imposed by data dependencies can be overcome to some extent with use of the data value prediction. Hybrid value predictor can obtain the high prediction accuracy using advantages of various predictors, but it has a defect that same instruction has overlapping entries in all predictor. In this paper, we propose a new hybrid value predictor which achieves high performance by using the information of static and dynamic classification. The proposed predictor can enhance the prediction accuracy and efficiently decrease the prediction table size of predictor, because it allocates each instruction into single best-suited predictor during the fetch stage by using the information of static classification. Also, it can enhance the prediction accuracy because it selects a best- suited prediction method for the “Unknown”pattern instructions by using the dynamic classification mechanism. Simulation results based on the SimpleScalar/PISA tool set and the SPECint95 benchmarks show the average correct prediction rate of 85.1% by using the static classification mechanism. Also, we achieve the average correction prediction rate of 87.6% by using static and dynamic classification mechanism.

Improvement of Classification Rate of Handwritten Digits by Combining Multiple Dynamic Topology-Preserving Self-Organizing Maps (다중 동적 위상보존 자기구성 지도의 결합을 통한 필기숫자 데이타의 분류율 향상)

  • Kim, Hyun-Don;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.12
    • /
    • pp.875-884
    • /
    • 2001
  • Although the self organizing map (SOM) is widely utilized in such fields of data visualization and topology preserving mapping, since it should have the topology fixed before trained, it has some shortcomings that it is difficult to apply it to practical problems, and classification capability is quite low despite better clustering performance. To overcome these points this paper proposes the dynamic topology preserving self-organizing map(DTSOM) that dynamically splits the output nodes on the map and trains them, and attempts to improve the classification capability by combining multiple DTSOMs K-Winner method has been applied to combine DTSOMs which produces K outputs with winner node selection method. This produces even better performance than the conventional combining methods such as majority voting weighting, BKS Bayesian, Borda, Condorect and reliability sum. DTSOM remedies the shortcoming of determining the topology in advance, and the classification rate increases significantly by combing multiple maps trained with different features. Experimental results with handwritten digit recognition indicate that the proposed method works out to problems of conventional SOM effectively so to improve the classification rate to 98.1%.

  • PDF

The Dynamic Flow Classification Method According to the VC Usage in IP Switching (IP 스위칭에서 VC 사용량에 따른 동적 흐름 분류 방법)

  • 박세환;박광채
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • IP Switching is a new routing technology Proposed to improve the Performance of IP routers. Flow classification is one of the key issues in IP Switching. To achieve better performance, flow classification should be matched to the varying IP traffic and an IP switch should make use of its hardware switching resources as fully as possible. This paper proposes an dynamic flow classification method for IP Switching. By dynamically adjusting the values of its control parameters in response to the present usage of the hardware switching resources, this dynamic method can efficiently match the varying IP traffic and thus improve the performance of an IP switch.

  • PDF