• Title/Summary/Keyword: 동적발란싱

Search Result 4, Processing Time 0.018 seconds

Dynamic Balancing in a Link Motion Punch Press (링크모션 펀치프레스의 다이나믹 발란싱)

  • Suh, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.415-426
    • /
    • 2007
  • In a link motion punch press, numerous links are interconnected and each link executes a constrained motion at high speed. As a consequence, dynamic unbalance force and moment are transmitted to the main frame of the press, which results in unwanted vibration. This degrades productivity and precise stamping work of the press. This paper presents an effective method for reducing dynamic unbalance in a link motion punch press based upon kinematic and dynamic analyses. Firstly, the kinematic analysis is carried out in order to understand the fundamental characteristics of the link motion mechanism. Then design variable approach is presented in order to automate the model setup for the mechanism whenever design changes are necessary. To obtain the inertia properties of the links such as mass, mass moment of inertia, and the center of mass, 3-dimensional CAD software was utilized. Dynamic simulations were carried out for various combinations of design changes on some links having significant influences on kinematic and dynamic behavior of the mechanism.

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF