본 논문에서는 연속적인 레인지(range) 영상 자료로부터 동작 벡터를 추출하는 새로운 블록 정합 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 단일 특징을 사용하지 않고 다중 특징인 명암값, 색상, 레인지 특징의 세 가지 특징을 통합한 정합 유사 함수를 정의하며, 엔트로피를 이용하여 각 특징의 기여도를 구한 후 이를 가중치의 형태로 정합 유사 함수에 적용한다. 그리고 제안된 알고리즘은 고정된 블록 템플릿을 사용하지 않고 가변적인 크기의 블록 템플릿을 사용한다. 제안한 블록 정합에서는 먼저 작은 정합 템플릿으로 블록 정합을 시작한다. 만일 정합 정도가 좋지 않으면 정합 템플릿의 크기를 조금 확장한 후 본 논문에서 정의한 정합기준이 만족하거나 사전에 정의된 최대 블록 크기에 도달할 때까지 블록정합을 반복한다. 실험에서는 본 논문에서 제안한 블록 정합 알고리즘과 기존의 다른 알고리즘의 성능을 비교 분석하여 제안한 알고리즘의 우수함을 보인다.
EMFG(Extended Mark Flow Graph)는 이산시스템을 표현하는데 유용한 그래프 도구로 알려져 있다. 본 연구에서는 EMFG에서 각 트랜지션이 점화하였을 때의 입출력 박스의 마크 변화량을 입출력 행렬로 표현하였고, 이를 사용하여 EMFG의 접속행렬을 구하였다. 점화가능벡터를 구하기 위하여 각 트랜지션의 점화조건을 점화조건행렬로 표현하였으며, 각 트랜지션의 점화완료 상태를 판단하기 위하여 점화완료벡터를 도입하였다. 이들을 사용하여 EMFG의 모든 동작과정이 수학적으로 해석될 수 있도록 EMFG의 동작해석 알고리즘을 개선하였다. 제안된 알고리즘을 정회전과 역회전을 반복하는 시스템에 적용하여 알고리즘이 올바르게 동작하는 것을 확인하였다. 제안된 알고리즘은 다양한 이산 시스템을 분석하는데 유용하다.
ACELP는 우수한 음질을 제공하지만 최적의 코드 벡터를 찾기 위한 계산량이 상당히 많은 단점이 있고, 이로 인하여 모든 시스템과 단말기에서는 고성능 DSP칩을 사용하여 동작시킨다. 본 논문에서는 고속 ACELP 코드북 검색 방법인 펄스 교환 검색 방법을 G.729 음성 압축기에 적용시켜 G.729 음성 압축기의 계산량을 감소시키는 방법을 연구하였다. 적용된 방법은 두 단계 과정을 가지며, 첫 단계에서는 완전 순차적 검색 방법을 통하여 매우 빠르게 대략적인 코드 벡터를 찾는다. 두 번째 단계에서는 앞에서 선택된 코드 벡터의 각 펄스의 중요도를 계산하여 역할이 적은 펄스를 제거하고 새로운 펄스로 교환하는 펄스 교환 과정을 통하여 코드 벡터의 성능을 향상시킨다. 적용된 방법은 표준에서 사용하는 코드북 검색 방법보다 적은 계산량을 가진다. 적용된 방법의 성능은 표준보다 0.3-0.5dB 정도의 SNRseg 감소를 보이지만 Fast Algorithm인 G.729A보다는 우수한 음질의 코드 벡터를 찾으며, 다양한 음성신호를 이용한 모의 실험을 통하여 이 결과를 확인하였다.
딥러닝(Deep-learning) 기반의 자연어 이해(Natural Language Understanding) 기술들은 최근에 상당한 성과를 성취했다. 하지만 딥러닝 기반의 자연어 이해 기술들은 내적인 동작들과 결정에 대한 근거를 설명하기 어렵다. 본 논문에서는 벡터를 그래프로 변환함으로써 신경망의 내적인 의미 표현들을 설명할 수 있도록 한다. 먼저 인간과 기계 모두가 이해 가능한 표현방법의 하나로 그래프를 주요 표현방법으로 선택하였다. 또한 그래프의 구성요소인 노드(Node) 및 엣지(Edge)의 결정을 위한 Element-Importance Inverse-Semantic-Importance(EI-ISI) 점수와 Element-Element-Correlation(EEC) 점수를 심층신경망의 훈련방법 중 하나인 드랍아웃(Dropout)을 통해 계산하는 방법을 제안한다. 다양한 실험들을 통해, 본 연구에서 제안한 벡터-그래프(Vector2graph) 변환 프레임워크가 성공적으로 벡터의 의미정보를 유지하면서도, 설명 가능한 그래프를 생성함을 보인다. 더불어, 그래프 기반의 새로운 시각화 방법을 소개한다.
카메라이 동작 정보는 컴퓨터 비전, 영상 코딩 및 비디오 검색 등의 분야에서 사용되는 강력하고 중요한 특징이다. 특히, 최근에 관심의 초점이 되고 있는 내용기반 비디오 검색을 위한 자동색인에서 장면전환 검출이나 이동 물체의 동작 정보 추출 등에 값지게 활용될 수 있다. 본 논문에서는 파라미터 모델을 이용해서 카메라의 동작을 추출하는 방법을 제안한다. 먼저, 영상의 공간적인 특성을 고려하면서 전체 과정의 속도를 탐색 영역 내에서 동적 백터를 추출한다. 그리고 추출된 동작 벡터를 파라미터 모델에 적용하여 파라미터를 추출하고, 카메라의 동작을 파라미터들의 상호 관계를 이용하여 정의하므로써 최종적인 카메라의 동작을 추출한다. 본 논문에서 제안한 방법은 기존의 방법에 비해 계산 시간상의 비용을 축소시켰고, 화소 단위가 아니라 셀 단위로 카메라의 동작을 추출하므로 다른 방법에 비해 잡음에 보다 강건하다. 또한, 이동 물체의 움직임으로 발생할 수 있는 오류를 최대한 배재한다.
본 논문에서는 전경과 배경을 동시에 고려하는 이동 물체 추적 기법을 제안한다. 본 논문에서 제안하는 이동 물체 추적 기법은 카메라가 고정되지 않은 동적인 환경에서 연속적으로 촬영된 동영상으로부터 배경과 전경을 분리한 후 배경으로부터는 카메라의 동작을, 그리고 전경으로부터는 이동 물체를 추적한다. 배경에서는 영상의 움직임을 나타내는 동작 벡터를 추출하여 2차원 파라미터 동작 모델인 어파인 동작 모델에 적합시키고, 회귀분석법을 통해 어파인 동작 모델을 구성하는 파라미터를 추출하여 분석함으로써 다양한 카메라의 동작을 구한다. 전경에서는 칼라 정보를 이용하여 물체들의 모델을 생성하고 매 시점마다 모델을 수정하면서 이동 물체를 추적한다. 본 논문에서는 카메라의 동작 및 이동 물체의 추적 시 예측 알고리즘인 칼만 필터를 활용함으로써 보다 효율적이고 강건한 추적이 가능하다. 또한, 배경에서 추출된 카메라의 동작 정보를 전경에서 추출하는 이동 물체의 이동궤적 정보 계산 시 활용함으로써 보다 정확하게 장면을 분석할 수 있다.
본 논문에서는 고압전동기를 직접 드라이브 할 수 있는 H-브릿지 멀티레벨 인버터의 개별 전력 셀의 동작원리에 대해서 고찰하였다. H-브릿지 멀티레벨 인버터는 여러 개의 단상 Power Cell을 직렬로 연결함으로써 저전압 전력용 반도체를 사용하여 고전압을 얻을 수 있고, 정현파에 가까운 출력전압 파형을 얻을 수 있는 멀티레벨 인버터 토폴로지이다. 480V, 180kVA H-브릿지 멀티레벨 인버터를 제작하고 V/F제어, 벡터제어, 센서리스 벡터제어 이론을 적용하여 인버터 출력전압 레벨이 여러 단계이며 dv/dt가 적으며 입력단 THD를 크게 낮출 수 있다는 결론을 얻었다.
ITU와 ISO/IEC가 공동으로 UHD급 영상 부호화를 위해 표준화를 진행하고 있는 HEVC 코덱은 H.264/AVC 대비 2배 이상의 압축 효율을 갖는 것을 목표로 정하고 있다. HEVC 코덱은 다수의 개선된 기술을 사용하고 있기 때문에 부호화효율을 크게 향상시킬 수 있었지만, 다른 한편으로 동작 복잡도가 매우 높기 때문에 여러 가지 다양한 응용 제품에서 활용되기 위해서는 복잡도 문제가 개선되어야 한다. 본 논문에서는 HEVC의 움직임 벡터 예측 시 현재 블록의 주변 블록들이 가지고 있는 참조 영상 정보를 이용하여 움직임 벡터 추정 모듈의 복잡도를 감소시키는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘을 사용하면, 압축 영상의 화질 저하는 최소화하면서 부호화기의 동작속도를 크게 감소시킬 수 있음을 실험을 통해 알 수 있었다.
본 논문에서는 7 개의 마그네틱 센서를 이용하여 가상 캐릭터의 자연스런 동작을 재현하는 애니메이션 알고리즘에 대해 기술한다. 이 방법의 특징은 인체 특징점의 위치와 방향정보를 Inverse Kinematics 이론에 적용하고, 이 특징점이 갖는 3 차원 벡터의 법선벡터를 이용하여 관절 방향을 표현하므로서 최소한의 센서로 전 인체의 동작을 재현할 수 있다는 점이다. 이 방법은 퍼스널 컴퓨터를 플랫폼으로 하는 단순한 모션 캡쳐 환경에서도 구현할 수 있으므로 애니메이션을 활용하는 각종 영상 응용 시스템 제작에 유용하게 쓰일 수 있다.
현재까지 연구되었던 뉴스 추천 시스템은 일반적으로 뉴스 제목, 뉴스 본문, 카테고리 정보 등의 텍스트 정보를 기반으로 사용자에게 맞춤 뉴스를 추천해주는 방식으로 동작한다. 구체적으로는 뉴스의 텍스트 정보를 통해 뉴스를 표현하는 임베딩 벡터를 생성하여 사용자 맞춤 뉴스를 추천하는 task-specific 한 아키텍처를 기반으로 동작한다. 기존 연구에서는 task-specific 아키텍처 내의 뉴스의 임베딩 벡터를 생성하는 과정에서 BERT 와 같은 언어모델을 이용하여 텍스트 정보를 더 잘 반영하고자 했다. 본 연구에서는 기존의 구조와 다르게, 뉴스 제목 인덱싱을 통해 전체 뉴스 추천 시스템에서의 언어모델을 충분히 활용할 수 있는 방식을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.