KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.465-472
/
2022
In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.
Kim, Kyung-Hoon;Lee, Min-Hong;Ryu, Hong-Yeon;Hong, Sung-Hoon;Nam, Ji-Seng
Proceedings of the Korea Information Processing Society Conference
/
2003.05b
/
pp.959-962
/
2003
멀티미디어 서비스 수요의 증가는 네트워크 상에서 기존의 문자기반의 컨텐츠 제공 서비스의 수요를 이미 앞질렀으며 네트워크와 시스템 자원의 발전에 따라 사용자 요구는 그에 따라 더욱 폭 넓게 증가하고 있다. 우수한 품질의 동영상 데이터를 온라인 상에서 품질 저하 없이 서비스 받을 수 있는 것을 넘어 사용자는 컨텐츠에 파생되는 부가의 서비스를 요구하게 되었고 이는 기존의 텍스트 정보에 의한 양방향 서비스가 아닌 사용자의 요구에 따른 멀티미디어 컨텐츠 자체에 대한 서비스를 위한 정보시스템이 필요하게 되었음을 의미한다. 본 논문에서는 객체 단위의 동영상을 실시간으로 합성하여 이를 사용자에게 즉시 서비스하는 양방향 멀티미디어 서버 시스템의 설계와 구현에 대해 기술하였다. 구현된 시스템은 사용자에게 일방적인 데이터를 전송하는 기존의 시스템과 달리 적용 가능한 객체 단위 동영상을 합성 전송하고 자동 추출된 실시간 오브젝트를 다양한 배경화면과 함께 합성하여 서비스 할 수 있는 기능 구조를 가진다. 또한 멀티미디어 서버의 주요 목표를 반영하여 확장과 성능을 고려한 클러스터 On-Demand 서버를 구성하였으며 서버와 서비스 관리를 위한 모든 구성요소를 포함하여 실제 서비스가 가능한 완전한 미디어 시스템을 설계 구현하였다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.727-730
/
2021
이미지와 비디오 합성 기술에 대한 수요가 늘어남에 따라, 인간의 손에만 의존하여 이미지나 비디오를 합성하는데에는 시간과 자원이 한정적이며, 전문적인 지식을 요한다. 이러한 문제를 해결하기 위해 최근에는 스타일 변환 네트워크를 통해 이미지를 변환하고, 믹싱하여 생성하는 알고리즘이 등장하고 있다. 이에 본 논문에서는 GAN을 이용한 스타일 변환 네트워크를 통한 자연스러운 스타일 믹싱에 대해 연구했다. 먼저 애니메이션 토이 스토리의 등장인물에 대한 데이터를 구축하고, 모델을 학습하고 두 개의 모델을 블렌딩하는 일련의 과정을 거쳐 모델을 준비한다. 그 다음에 블렌딩된 모델을 통해 타겟 이미지에 대하여 스타일 믹싱을 진행하며, 이 때 이미지 해상도와 projection 반복 값으로 스타일 변환 정도를 조절한다. 최종적으로 스타일 믹싱한 결과 이미지들을 바탕으로 하여 스타일 변형, 스타일 합성이 된 인물에 대한 동영상을 생성한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.191-192
/
2022
본 논문에서는 딥러닝의 주요 기법 중 하나인 GAN 을 활용하여 압축된 영상의 품질을 개선하는 방법을 제안한다. 제안하는 GAN 의 생성자는 U-Net 과 ResNet 을 기반으로 구성되었으며, 판별자는 합성곱층과 전연결층으로 구성하였다. 네트워크의 학습은 HEVC (High Efficiency Video Coding)의 테스트 모델인 HM16.25 를 사용하여 RA (Random Access) 구성하에 양자화 계수 37 로 압축된 영상을 입력으로 하여 수행되었다. 제안하는 네트워크의 성능 확인을 위해 학습 시와 동일한 조건으로 압축된 다른 영상을 입력으로 하여 실험하였다. 실험 결과 영상의 평균 PSNR 은 34.20dB 에서 34.24dB 로 0.04dB 의 품질 향상이 이루어진 것을 확인할 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.14
no.9
/
pp.105-113
/
2009
This paper is aimed at embodying the optimal system for foreign workforce supply of nation in order to introduce qualified foreign workers at the age of eleven thousand foreigners. It is difficult to employ foreign workers qualified and it makes job rosters' confidence fall down which is the supplementary resources when selecting due to the insufficient job seekers' detailed information. Therefore, the moving control system should be added in current system to deal with these problems. For this, in this paper, we propose that the moving picture embedded system applies to the current EPS utilizing multimedia, network and database technologies as regards adding the function of the moving picture synthesis to recent system. It also suggests the advanced foreign employment control system related to the advanced system which makes employers to hire foreign workers satisfying their requirements and demand.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.259-261
/
2001
본 논문에서는 네트워크를 통해 공유되는 가상공간에 참가자가 분신(아바타) 또는 실물 동영상의 형태로 자유로이 참가하여 가상세계를 현실감 있게 공유할 수 있는 시스템을 제안한다. Java3D를 이용하여 컴퓨터그래픽과 실영상을 실시간에 합성 렌더링함으로써 3차원 가상공간을 구현하고 있다. 분산환경에서의 실험을 통해 기술적 가능성을 제시한다.
As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.865-868
/
2017
일반적으로 비디오로부터 캡션을 생성하는 작업은 입력 비디오로부터 특징을 추출해내는 과정과 추출한 특징을 이용하여 캡션을 생성해내는 과정을 포함한다. 본 논문에서는 효과적인 비디오 캡션 생성을 위한 심층 신경망 모델과 그 학습 방법을 소개한다. 본 논문에서는 입력 비디오를 표현하는 시각 특징 외에, 비디오를 효과적으로 표현하는 동적 의미 특징과 정적 의미 특징을 입력 특징으로 이용한다. 본 논문에서 입력 비디오의 시각 특징들은 C3D, ResNet과 같은 합성곱 신경망을 이용하여 추출하지만, 의미 특징은 본 논문에서 제안하는 의미 특징 추출 네트워크를 활용하여 추출한다. 그리고 이러한 특징들을 기반으로 비디오 캡션을 효과적으로 생성하기 위하여 선택적 주의집중 캡션 생성 네트워크를 제안한다. Youtube 동영상으로부터 수집된 MSVD 데이터 집합을 이용한 다양한 실험을 통해, 본 논문에서 제안한 모델의 성능과 효과를 확인할 수 있었다.
In this paper, improved contour region coding method is proposed to accomplish better depth map coding performance. First of all, in order to use correlation between color video and depth map, a structure in SVC is applied to 3DVC. This can reduce bit-rate of the depth map while supporting the video to be transferred via various collection of network. As the depth map is mainly used to synthesize videos from different views, corrupted contour region can damage the overall quality of video. We hereby adapt a new differential quantization method when separating the contour region. The experimental results show that the proposed method can improve video quality by 0.06~0.5dB which translate the bit rate saving by 0.1~1.15%, when compared to the reference software.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.