• Title/Summary/Keyword: 동역학 식

Search Result 184, Processing Time 0.025 seconds

Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System (해상 부유식 풍력 타워의 동적거동해석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this study, the dynamic modeling of floating offshore wind turbine system is reported and the dynamic behavior of the platform for the offshore wind turbine system is analyzed. The modeling of the wind load for a floating offshore wind turbine tower is based on the vertical profile of wind speed. The relative Morison equation is employed to obtain the wave load. ADAMS is used to carry out the dynamic analysis of the floating system that should withstand waves and the wind load. Computer simulations for four types of tension leg platforms are performed, and the simulation results for the platforms are compared with each other.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Effects of Initial Conditions on Transient Responses in Dynamic Simulation of FOWT (초기 조건이 부유식 풍력터빈 동역학 해석의 과도응답에 미치는 영향)

  • Song, Jin-Seop;Rim, Chae-Whan;Moon, Seok-Jun;Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The IEC standard for onshore or offshore wind turbines requires additional dummy simulations (at least 5 s) for the transient responses due to initial conditions. An increase in the dummy time causes a considerable increase in the computational cost considering multiple design spirals with several thousand design load analysis cases. A time of 30 s is typically used in practical simulations for a wind turbine design with a fixed platform. However, 30 s may be insufficient for floating offshore wind turbines (FOWT) because the platforms have lower natural frequencies, and the transient responses will last much longer. In this paper, an initial condition application algorithm is implemented for WindHydro, and the appropriate dummy simulation time is investigated based on a series of dynamic simulations of a FOWT. As a result, it is found that more than 300 s is required for the platform to have stationary motion after the initial transient responses for the FOWT under the conditions considered.

A Study on Effect of Aerodynamic Loads on Mooring Line Responses of a Floating Offshore Wind Turbine (공기 동역학 하중이 부유식 해상 풍력 발전기의 계류선 응답에 미치는 영향에 관한 연구)

  • Kim, Hyungjun;Han, Seungoh;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • This paper presents effect of aerodynamic loads on mooring line responses of a floating offshore wind turbine. A Matlab code based on blade element momentum (BEM) theory is developed to consider aerodynamic loads acting on NREL 5MW wind turbine. The aerodynamic loads are coupled with time-domain hydrodynamic analyses using one-way interaction scheme of the wave and wind loads. A semi-submersible floating platform which is from Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform is used with catenary mooring lines simply composed of studless chain links. Average values of mooring peak tensions obtained from aerodynamic load consideration are significantly increased compared to those from simple wind drag force consideration. Consideration of aerodynamic loads also yield larger tension ranges which can be important factor to reduce fatigue life of the mooring lines.

Dynamic Analysis of Floating Wave Energy Generation System with Mooring System (계류시스템을 가진 부유식 파력발전기의 동적거동 해석)

  • Choi, Gyu Seok;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.257-263
    • /
    • 2013
  • In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three-dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load.

The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids (구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-49
    • /
    • 2000
  • This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of formulations, the finite element method is based on the introduction of a new quantity defined as heat displacement, which allows the heat conduction equations to be written in a form equivalent to the equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The equations obtained are used to express a variational formulation which, together with the concept of generalized coordinates, yields a set of differential equations with the time as an independent variable. Using the Laplace transform, the resulting finite element equations are described in the transform domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived in the first part and the equations of motions and their corresponding boundary conditions, which is referred to the transformed equation. Selections of interpolation functions dependent on only the space variable and an application of the weighted residual method to the coupled equation result in the necessary finite element matrices in the transformed domain. Finally, to prove the validity of two approaches, a comparison with one finite element equation and the other is made term by term.

  • PDF

Analytical Study on the Slewing Dynamics of Hybrid Coordinate Systems (복합좌표계 시스템의 선회동역학에 관한 해석적 연구)

  • Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.36-44
    • /
    • 2003
  • In this paper, an analytic solution method is proposed to overcome the numerical problems when the slewing dynamics of hybrid coordinate systems is investigated via time finite element analysis. It is shown that the dynamics of the hybrid coordinate systems is governed by the coupled dual differential equations for both slewing and structural modes. Structural modes are transformed into the time-based modal coordinates and analytic spatial propagation equations are derived for each space-dependent time mode. Slew angle history is obtained analytically by appropriate applications of the boundary conditions and structural propagation is re-calculated using the slew angle. Numerical examples are demonstrated to validate the proposed analytic method in comparison to the existing state transition matrix method.