• Title/Summary/Keyword: 동시 관측

Search Result 756, Processing Time 0.034 seconds

A New Approach to Mobile Device Design - focused on the Communication Tool & it's GUI for Office Workers in the Near Future - (모바일 기기 디자인의 새로운 접근 - 근 미래 작업환경에서의 커뮤니케이션 도구 디자인과 GUI 연구를 중심으로 -)

  • Yang, Sung-Ho
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.31-42
    • /
    • 2006
  • This study originates from the following critical mind; what will the office of the future be like? and what technology will we rely upon most to communicate with colleagues or to access business information. In the office environment today, new technology has compelled new work paradigm and has greatly affected the capabilities of the individual to work in a more productive and efficient manner. However, even though new computer technology has changed the business world so rapidly, it is very difficult to see the changes that have been taken place. As an aim of the study, creating a mobile tool for office workers that successfully supports their work and communication was explored, and this study explored future work environment with a 5 years technological and social perspective. As a result of this study, the bON brings new visions to the mobile professionals via various interfaces. The bON, a mobile device, is both a system of work and of communication for office workers. The bON, as an integrated tool for working and communicating, forms the basis for a mobile information gateway that is equally capable of functioning as a mobile desk. The basic underlying idea is that all formal meeting places and hallways in the office are equipped with large wall-mounted screens. The bON collaborates with these media in various ways to enhance productivity and efficiency. The main challenge for the bON to enhance both mobility and quality of information is using new technology including bendable and flexible display and soft material display and sensors. To answer for the strong needs for mobility, the whole size of the device is fairly small while the screen is rolled inside the device. For Graphical User Interface, moreover, a new technique called Multi-layering Interface was adopted to stretch user's visual limits and suggests new direction in designing mobile device, equipped with small size display.

  • PDF

Evaluation of stream flow and water quality behavior by weir operation in Nakdong river basin using SWAT (SWAT을 이용한 낙동강유역의 보 개방에 따른 하천유량 및 수질 거동 분석)

  • Lee, Ji Wan;Jung, Chung Gil;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.349-360
    • /
    • 2019
  • The purpose of this study is to evaluate the stream flow and water quality (SS, T-N, and T-P) behavior of Nakdong river basin ($23,609.3km^2$) by simulating the dam and weir operation scenarios using SWAT (Soil and Water Assessment Tool). The operation senarios are the simultaneous release for all dam and weirs (scenario 1), simultaneous release for all weirs (scenario 2), and sequential release for the weirs with one month interval from upstream weirs (scenario 3). Before evaluation, the SWAT was calibrated and validated using 11 years (2005-2015) daily multi-purpose dam inflow at 5 locations (ADD, IHD, HCD, MKD, and MYD), multi-function weir inflow at 7 locations (SHW, GMW, CGW, GJW, DSW, HCW, and HAW), and monthly water quality monitoring data at 6 locations (AD-4, SJ-2, EG, HC, MK-4, and MG). For the two dam inflow and dam storage, the Nash-Sutcliffe efficiency (NSE) was 0.56~0.79, and the coefficient of determination ($R^2$) was 0.68~0.90. For water quality, the $R^2$ of SS, T-N, and T-P was 0.64~0.79, 0.51~0.74, and 0.53~0.72 respectively. For the three scenarios of dam and weir release combination suggested by the ministry of environment, the scenario 1 and 3 operations were improved the stream water quality (for T-N and T-P) within the 3 months since the time of release, but it showed the negative effect for 3 months after compared to scenario 2.

Characteristics of Cooling Effect Depending on Operation of Forced Ventilation Systems in a Single-span Plastic Greenhouse (강제환기장치 사용에 따른 단동 플라스틱 온실 기온 강하 특성)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Kwon, Jin-Kyung;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • This study was carried out to investigate quantitative characteristics of the cooling effect in a single-span arch greenhouse with roll-up side vents depending on operation of circulation and exhaust fans during ventilation, in order to suggest a practical strategy regarding installation or operation of forced ventilation systems. The examination was conducted under 3 different ventilation conditions (side vents only, side vents + circulation fans, and side vents + circulation fans + exhaust fans). In each condition, variations of internal and external air temperatures and exogenous environmental factors were recorded during ventilation, and the cooling effects were investigated by comparing the normalized temperature difference (NTD) of each ventilation condition. In the morning time (11:00-12:00), a temporary peak in the temperature difference was observed at the beginning of ventilation regardless of ventilation methods. The time taken to the maximum NTD was decreased from 340 s to 110s, and the NTD was dropped from 1.158 to 1.037 as the more forced ventilation systems were operated. The more operations caused the passing time over specific NTD values reduced by 60% as the time was reduced from 1,030 s to 550 s at NTD = 0.8, 1,610 s to 915 s at NTD = 0.6, and 2,315 s to 1,360 s at NTD = 0.4. The temporary peak in NTD was not observed in the afternoon time (14:00-15:00) but it was dropped as quickly as the ventilation started. Also the more operations resulted in the passing time over specific NTD values reduced by 70% as the time was reduced from 560 s to 345 s at NTD = 0.8, from 825 s to 540 s at NTD = 0.6, and from 1,145 s to 810 s at NTD = 0.4. Conclusively, the intervention of the forced ventilation system is recommended in the morning time or in high thermal conditions to achieve more effective and economical ventilation.

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.

Assessment of future climate and land use changes impact on hydrologic behavior in Anseong-cheon Gongdo urban-growing watershed (미래 기후변화와 토지이용변화가 안성천 공도 도시성장 유역의 수문에 미치는 영향 평가)

  • Kim, Da Rae;Lee, Yong Gwan;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to evaluate the future hydrologic behavior affected by the potential climate and land use changes in upstream of Anseong-cheon watershed ($366.5km^2$) using SWAT. The HadGEM3-RA RCP 4.5 and 8.5 scenarios were used for 2030s (2020-2039) and 2050s (2040-2059) periods as the future climate change scenario. It was shown that maximum changes of precipitation ranged from -5.7% in 2030s to +18.5% in 2050s for RCP 4.5 scenarios and the temperature increased up to $1.8^{\circ}C$ and $2.6^{\circ}C$ in 2030s RCP 4.5 and 2050s 8.5 scenarios respectively based on baseline (1976-2005) period. The future land uses were predicted using the CLUE-s model by establishing logistic regression equation. The 2050 urban area were predicted to increase of 58.6% (29.0 to $46.0km^2$). The SWAT was calibrated and verified using 14 years (2002-2015) of daily streamflow with 0.86 and 0.76 Nash-Sutcliffe model efficiency (NSE) for stream flow (Q) and low flow 1/Q respectively focusing on 2 drought years (2014-2015) calibration. For future climate change only, the stream discharge showed maximum decrease of 24.2% in 2030s RCP 4.5 and turned to maximum increase of 10.9% in 2050s RCP 4.5 scenario compared with the baseline period stream discharge of 601.0 mm by the precipitation variation and gradual temperature increase. While considering both future climate and land use change, the stream discharge showed maximum decrease of 14.9% in 2030s RCP 4.5 and maximum increase of 19.5% in 2050s RCP 4.5 scenario by the urban growth and the related land use changes. The results supported that the future land use factor might be considered especially for having high potential urban growth within a watershed in the future climate change assessment.

A Study of the Characteristics of Heavy Rainfall in Seoul with the Classification of Atmospheric Vertical Structures (대기연직구조 분류에 따른 서울지역 강한 강수 특성 연구)

  • Nam, Hyoung-Gu;Guo, Jianping;Kim, Hyun-Uk;Jeong, Jonghyeok;Kim, Baek-Jo;Shim, Jae-Kwan;Kim, Byung-Gon
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.572-583
    • /
    • 2019
  • In this study, the atmospheric vertical structure (AVS) associated with summertime (June, July, and August) heavy rainfall in Seoul was classified into three patterns (Loaded Gun: L, Inverted V: IV, and Thin Tube: TT) using rawinsonde soundings launched at Osan from 2009 to 2018. The characteristics of classified AVS and precipitation property were analyzed. Occurrence frequencies in each type were 34.7% (TT-type), 20.4% (IV-type), 20.4% (LG-type), and 24.5% (Other-type), respectively. The mean value of Convective Available Potential Energy (1131.1 J kg-1) for LG-types and Storm Relative Helicity (357.6 ㎡s-2) for TT-types was about 2 times higher than that of other types, which seems to be the difference in the mechanism of convection at the low level atmosphere. The composited synoptic fields in all cases showed a pattern that warm and humid southwesterly wind flows into the Korean Peninsula. In the cases of TT-type, the low pressure center (at 850 hPa) was followed by the trough in upper-level (at 500 hPa) as the typical pattern of a low pressure deepening. The TT-type was strongly influenced by the low level jet (at 850 hPa), showing a pattern of connecting the upper- and low-level jets. The result of analysis indicated that precipitation was intensified in the first half of all types. IV-type precipitation induced by thermal instability tended to last for a short term period with strong precipitation intensity, while TT-type by mechanical instability showed weak precipitation over a long term period.

Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen (볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • In vitro and in situ incubation studies were conducted to determine effects of yeast culture supplements (Saccharomyces cerevisiae) on cellulolytic bacterial function and fiber digestion in rice straw. In vitro dry matter digestibility of rice straw gradually increased according to supplemental levels of yeast culture (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0%). Digestibility of rice straw started to increase apparently when yeast culture was added more than 0.6% level (p<0.05). Also, we reconfirmed that in vitro dry matter digestibility was significantly increased by 0.6% of yeast culture addition in 4% NaOH treated and non-treated rice straws (p<0.05). When in situ dry matter digestibility was tested in Korean native goats fed basal diet or experimental diet which contained 1.0% of yeast culture, the yeast culture feeding improved in situ dry matter digestibility in both 4% NaOH treated and non-treated rice straws (p<0.05). In case of real-time PCR monitoring cellulolytic bacterial function, the bacterial population attached on rice straw showed the increasing trends with higher level of yeast culture spraying on rice straw. F. succinogenes and R. flavefaciens were significantly increased in accordance to spraying levels of yeast culture (0.0, 0.1 and 0.3%) at both 12 and 24 hrs of in situ incubation (p<0.05). R. albus was significantly higher population in yeast culture spraying than non-soraying at 12 hrs of in situ incubation (p<0.05). These bacterial populations were showed the increasing trends with digestibility enhancement of rice straw according to the higher levels of yeast culture supplement. Overall, these results clearly suggest that the presence of yeast culture result in noticeable increase of rice straw digestion, which is modulated via good effect on cellulolytic bacterial attachment to fiber substrates.

Diagnosis of Irrigation Time Based on Microchange of Stem Diameter in Greenhouse Tomato (온실재배 토마토의 농직경 변화에 의한 관개시기 진단)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • Stem diameter and shoot fresh weight of tomato grown in greenhouse were measured non-destructively at 10 minutes interval from 1 to 16 July, 1996 with displacement detector using strain gauges and with suspension-type load cell, respectively, and simultaneously were measured soil water potential, transpiration and solar radiation. Ample water was irrigated before experiment, and thereafter, irrigations were made on the next morning when visual symptoms of wilting appeared. Shoot fresh weight and stem diameter showed very similar patterns in diurnal changes which are characterized by predawn maximum and afternoon minimum and in long- term evolutions, suggesting that stem diameter shrinkage and expansion are closely related to plant water content and growth, respectively, Shoot weight and stem diameter reached minimum values a little later than the time on which transpiration showed maximum. The daily net gains of fresh weight(DG) and stem diameter(DI) showed significantly Positive correlations with solar radiation in those days on which plants were not water-stressed. However, Dl and DG on those days of water stress showed much lower values than expected from the relationships between solar radiation and them. Transpiration was much lower than the expected potential transpiration on 10 July, implying that plants were water-stressed. In this case water stress was not detected from visual symptom of wilting and/or soil water potential, but was able to be identified by the lower DI and DG than the expected. The maximum contraction of stem diameter(MC) and the maximum loss of fresh weight(ML) during daytime showed significantly positive correlations with solar radiation in those days on which plants were not water-stressed and were observed greater than expected from the relationships on severely water-stressed days. But mild water stress could not be discernable by ML and MC. It would be concluded that the daily net gains of fresh weight and/or stem diameter could be used as criteria for diagnosing the water status of tomato and for triggoring the onset of irrigation in automatic system.

  • PDF

A Study on New Pochonka Published in A.D. 1792 (1792년에 출간된 새로운 보천가(步天歌)에 대한 연구)

  • Ahn, Sang-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.603-620
    • /
    • 2009
  • New Pochonka published in the eighteenth century of the Choson dynasty was composed of star-charts based on the new observations made by Jesuits in China and songs corrected a little bit from previous version of Pochonka. The asterisms in the previous Pochonka are listed in the same order to that in the Song dynasty's literature; while the asterisms in the new Pochonka are listed in accordance with Pu-tien-ko published in China after the Ming dynasty. The Chinese-style twelve-equatorial-section system is adopted in the new Pochonka, while in its song is adopted the zodiac system, which can be seen in the star-charts of previous version of Pochonka. The asterisms belonging to three or four neighboring lunar-mansions are drawn in one chart. Each chart covers asterisms not belonging to a certain range of right ascension, but to a certain lunar mansion. We estimate the forming era of the new Pochonka from the following facts; that the Ling-Tai-I-Hsiang-Chih was used to make charts and footnotes whose archetype can be found in the Chinese literature around A.D. 1700, that these Chinese books were imported into Choson in A.D. 1709, that the naming taboo to the emperor Khang-Hsi was used, that the order of Shen-Hsiu (參宿) was transposed with Tshui-Hsiu (자宿), and that the new Pochonka was substituted for the old version when the rules of Royal Astronomical Bureau was reformed in A.D. 1791. In conclusion, the parent sources of the charts and footnotes of the new Pochonka might be imported from the Ching dynasty around 1709 A.D. to form the new Pochonka between A.D. 1709 and A.D. 1791, and finally to be published in A.D. 1792. We discuss the possible future works to make a firm conclusion.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.