• Title/Summary/Keyword: 동시출현 단어

Search Result 127, Processing Time 0.02 seconds

The Research Trends about the Big Data Using Co-word Analysis (동시출현 단어분석을 활용한 빅데이터 관련 연구동향 분석)

  • Kim, Wanjong
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.17-20
    • /
    • 2014
  • 본 연구는 동시출현 단어분석 기법을 이용하여 최근 전세계적으로 많은 주목을 받고 있는 빅데이터(Big Data) 관련 연구 동향과 연구 영역을 분석하는 것을 목적으로 한다. 이를 위하여 인용색인데이터베이스인 Web of Science SCIE(Science Citation Index Expanded)에서 분석 대상 논문을 수집하였다. 논문 수집을 위한 검색식은 은 Title(논문 제목), Abstract(초록), Author Keywords(저자 키워드), Keywords $Plus^{(R)}$의 네 가지 필드를 동시에 검색하는 주제어(topic)가 "big data"를 포함하고 있는 논문 563편을 대상으로 동시출현단어 분석을 수행하였다.

  • PDF

Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences (단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법)

  • Song, KwangHo;Kim, Yoo-Sung
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.522-536
    • /
    • 2017
  • Keyword extraction can be utilized in text mining of massive documents for efficient extraction of subject or related words from the document. In this study, we proposed a hierarchical graph model based on the co-occurrence relationship, the intrinsic dependency relationship between words, and common sub-word in a single document. In addition, the enhanced TextRank algorithm that can reflect the influences of outgoing edges as well as those of incoming edges is proposed. Subsequently a novel keyword extraction scheme using the proposed hierarchical graph model and the enhanced TextRank algorithm is proposed to extract representative keywords from a single document. In the experiments, various evaluation methods were applied to the various subject documents in order to verify the accuracy and adaptability of the proposed scheme. As the results, the proposed scheme showed better performance than the previous schemes.

Word Ambiguity Resolution for Concept-based Text Classification (개념 기반 문서 분류를 위한 단어 애매성 해소)

  • 강원석;황도삼
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.167-169
    • /
    • 2000
  • 문서 분류 시스템은 문서에 나타난 용어나 개념의 출현 정보를 이용한다. 개념 기반문서분류는 용어를 사용하지 않고 문서의 단어에 나타난 의미를 이용한다. 단어가 중의성을 가지는 경우 그 뜻을 정확히 가리지 않으면 문서에 출현하지 않은 의미를 이용하게 되므로 문서 분류 시스템의 성능이 저하된다. 본 논문은 개념 기반 문서분류를 위하여 단어 애매성 해소를 시도하였다. 문서에 출현된 의미 정보를 이용하여 의미들간의 공기정보를 구하고 이를 이용하여 단어의 애매성을 해소하였다. 단어의 의미정보는 시소러스 도구를 통해 획득하고 의미들간의 공기정보는 의미들간의 동시 출현 정보를 획득하여 구축하였다. 본 시스템은 문서 분류 등 자연어처리 분야에 이용할 수 있어 효용가치가 높다.

  • PDF

A Study on the Intellectual Structure Analysis by Keyword Type Based on Profiling: Focusing on Overseas Open Access Field (프로파일링에 기초한 키워드 유형별 지적구조 분석에 관한 연구 - 국외 오픈액세스 분야를 중심으로 -)

  • Kim, Pan Jun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.115-140
    • /
    • 2021
  • This study divided the keyword sets searched from LISTA database focusing on the overseas open access fields into two types (controlled keywords and uncontrolled keywords), and examined the results of performing an intellectual structure analysis based on profiling for the each keyword type. In addition, these results were compared with those of an intellectual structural analysis based on co-word analysis. Through this, I tried to investigate whether similar results were derived from profiling, another method of intellectual structure analysis, and to examine the differences between co-word analysis and profiling results. As a result, there was a similar difference to the co-word analysis in the results of intellectual structure analysis based on profiling for each of the two keyword types. Also, there were also noticeable differences between the results of intellectual structural analysis based on profiling and co-word analysis. Therefore, intellectual structure analysis using keywords should consider the characteristics of each keyword type according to the research purpose, and better results can be expected to be used based on profiling than co-word analysis to more clearly understand research trends in a specific field.

Text Categorization using Topic Signature and Co-occurrence Features (Topic Signature와 동시 출현 단어 쌍을 이용한 문서 범주화)

  • Bae, Won-Sik;Han, Yo-Sub;Cha, Jeong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.262-267
    • /
    • 2008
  • 본 논문에서는 문서 내에서 동시에 출현하는 단어 쌍을 자질 추출 단위로 하는 문서 범주화 시스템에 대하여 기술한다. 자질 추출 단위를 단어 쌍으로 정의한 것은 문서에서 빈번하게 동시에 출현하는 단어들은 서로 연관관계가 높으며, 단어 하나보다는 연관관계가 높은 단어들의 쌍이 특정 범주의 문서에서만 나타날 확률이 높아지므로 문서 분류 능력을 높이는데 좋은 요인으로 작용할 수 있을 것이라는 가정 때문이다. 그리고 문서 요약 분야에서 제안된 Log-likelihood Ratio를 기반으로 하는 Topic Signature Term Extraction 방법을 사용하여 자질 추출을 하고, Naive Bayes 분류기를 이용하여 문서를 분류한다. 본 연구는 Reuters-21578 문서 집합을 이용한 성능평가에서 좋은 결과를 보였으며, 이는 앞으로의 연구에도 기여할 수 있을 것이라 기대한다.

  • PDF

Keyword Automatic Extraction Scheme with Enhanced TextRank using Word Co-Occurrence in Korean Document (한글 문서의 단어 동시 출현 정보에 개선된 TextRank를 적용한 키워드 자동 추출 기법)

  • Song, KwangHo;Min, Ji-Hong;Kim, Yoo-Sung
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.62-66
    • /
    • 2016
  • 문서의 의미 기반 처리를 위해서 문서의 내용을 대표하는 키워드를 추출하는 것은 정확성과 효율성 측면에서 매우 중요한 과정이다. 그러나 단일문서로부터 키워드를 추출해 내는 기존의 연구들은 정확도가 낮거나 한정된 분야에 대해서만 검증을 수행하여 결과를 신뢰하기 어려운 문제가 있었다. 따라서 본 연구에서는 정확하면서도 다양한 분야의 텍스트에 적용 가능한 키워드 추출 방법을 제시하고자 단어의 동시출현 정보와 그래프 모델을 바탕으로 TextRank 알고리즘을 변형한 새로운 형태의 알고리즘을 동시에 적용하는 키워드 추출 기법을 제안하였다. 제안한 기법을 활용하여 성능평가를 진행한 결과 기존의 연구들보다 향상된 정확도를 얻을 수 있음을 확인하였다.

  • PDF

Profiling and Co-word Analysis of Teaching Korean as a Foreign Language Domain (프로파일링 분석과 동시출현단어 분석을 이용한 한국어교육학의 정체성 분석)

  • Kang, Beomil;Park, Ji-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.4
    • /
    • pp.195-213
    • /
    • 2013
  • This study aims at establishing the identity of teaching Korean as a Foreign Language (KFL) domain by using journal profiling and co-word analysis in comparison with the relevant and adjacent domains. Firstly, by extracting and comparing topic terms, we calculate the similarity of academic journals of the three domains, KFL, teaching Korean as a Native Language (KNL), and Korean Linguistics (KL). The result shows that the journals of KFL form a distinct cluster from the others. The profiling analysis and co-word analysis are then conducted to visualize the relationship among all the three domains in order to uncover the characteristics of KFL. The findings show that KFL is more similar to KNL than to KL. Finally, the comparison of knowledge structures of these three domains based on the co-word analysis demonstrates the uniqueness of KFL as an independent domain in relation with the other relevant domains.

Keyword Automatic Extraction Scheme with Enhanced TextRank using Word Co-Occurrence in Korean Document (한글 문서의 단어 동시 출현 정보에 개선된 TextRank를 적용한 키워드 자동 추출 기법)

  • Song, KwangHo;Min, Ji-Hong;Kim, Yoo-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.62-66
    • /
    • 2016
  • 문서의 의미 기반 처리를 위해서 문서의 내용을 대표하는 키워드를 추출하는 것은 정확성과 효율성 측면에서 매우 중요한 과정이다. 그러나 단일문서로부터 키워드를 추출해 내는 기존의 연구들은 정확도가 낮거나 한정된 분야에 대해서만 검증을 수행하여 결과를 신뢰하기 어려운 문제가 있었다. 따라서 본 연구에서는 정확하면서도 다양한 분야의 텍스트에 적용 가능한 키워드 추출 방법을 제시하고자 단어의 동시출현정보와 그래프 모델을 바탕으로 TextRank 알고리즘을 변형한 새로운 형태의 알고리즘을 동시에 적용하는 키워드 추출 기법을 제안하였다. 제안한 기법을 활용하여 성능평가를 진행한 결과 기존의 연구들보다 향상된 정확도를 얻을 수 있음을 확인하였다.

  • PDF

기업가정신에 대한 연구동향 분석

  • Jang, Seong-Hui
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2022.04a
    • /
    • pp.73-79
    • /
    • 2022
  • 본 연구는 동시출현단어 분석과 토픽모델링을 통해 기업가정신의 연구주제와 연구 동향을 분석하여 기업가정신 연구에 대한 향후 연구방향을 수립하기 위한 정보를 제공하는 것이 목적이다. 이를 위해 Web of Science 데이터베이스에서 "entrepreneurship"을 기본검색어로 설정하고, 2002년부터 2021년까지 발표한 영어 논문으로 제한하여 기업가정신 논문의 데이터를 다운로드하여 데이터를 확보하였다. 본 연구에서는 VOSviewer 프로그램을 이용하여 동시출현단어 분석을 하였고, R 프로그램을 이용하여 토픽모델링 분석을 하였다. 동시출현단어 분석 결과, 기업가정신과 혁신 클러스터, 기업가정신 교육 클러스터, 사회적 기업가정신과 지속가능성 클러스터, 기업성과 클러스터, 그리고 지식 및 기술이전 클러스터 등 5개의 클러스터로 구분되었다. 토픽모델링 분석 결과, 창업환경 및 경제발전, 국제 기업가정신, 다양한 기업가정신, 벤처기업과 자본조달, 정부정책 및 지원, 사회적 기업가정신, 경영관련 이슈, 지역도시계획 및 개발, 기업가정신 교육, 기업가의 혁신과 성과, 기업가정신 연구, 기업가의 창업의도 등 12개의 토픽으로 분석되었다. 본 연구의 결과는 기업가정신 연구에 대한 전반적인 연구동향을 파악할 뿐만 아니라, 기업가정신과 관련된 어떠한 연구 주제들이 다루어져 왔는지에 대해 분석함으로써 기업가정신에 대한 연구의 이해도를 높이고 기업가정신 연구가 가져올 방향성을 제안하는데 활용할 수 있을 것으로 기대된다.

  • PDF

A Study on the Research Trends in Domestic/International Information Science Articles by Co-word Analysis (동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악)

  • Kim, Ha Jin;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.99-118
    • /
    • 2014
  • This paper carried out co-word analysis of noun and noun phrase using text-mining technique in order to grasp the research trends on domestic and international information science articles. It was conducted based on collected titles and articles of the papers published in the Journal of the Korean Society for Information Management (KOSIM) and Journal of American Society for Information Science and Technology (JASIST) from 1990 to 2013. By dividing whole period into five publication window, this paper was organized into the following processes: 1) analysis of high frequency co-word pair to examine the overall trends of both information science articles 2) analysis of each word appearing with high frequency keyword to grasp the detailed subject 3) focused network analysis of trend after 2010 when distinctively new keyword appeared. The result of the analysis shows that KOSIM has considerable portion of studies conducted regarding topics such as library, information service, information user and information organization. Whereas, JASIST has focused on studies regarding information retrieval, information user, web information, and bibliometrics.