DOI QR코드

DOI QR Code

A Study on the Intellectual Structure Analysis by Keyword Type Based on Profiling: Focusing on Overseas Open Access Field

프로파일링에 기초한 키워드 유형별 지적구조 분석에 관한 연구 - 국외 오픈액세스 분야를 중심으로 -

  • Received : 2021.10.18
  • Accepted : 2021.11.08
  • Published : 2021.11.30

Abstract

This study divided the keyword sets searched from LISTA database focusing on the overseas open access fields into two types (controlled keywords and uncontrolled keywords), and examined the results of performing an intellectual structure analysis based on profiling for the each keyword type. In addition, these results were compared with those of an intellectual structural analysis based on co-word analysis. Through this, I tried to investigate whether similar results were derived from profiling, another method of intellectual structure analysis, and to examine the differences between co-word analysis and profiling results. As a result, there was a similar difference to the co-word analysis in the results of intellectual structure analysis based on profiling for each of the two keyword types. Also, there were also noticeable differences between the results of intellectual structural analysis based on profiling and co-word analysis. Therefore, intellectual structure analysis using keywords should consider the characteristics of each keyword type according to the research purpose, and better results can be expected to be used based on profiling than co-word analysis to more clearly understand research trends in a specific field.

본 연구는 국외 오픈액세스 분야를 대상으로 LISTA 데이터베이스에서 추출한 키워드 집합을 두 가지 유형(통제키워드, 비통제키워드)으로 구분하고, 각 키워드 유형별로 프로파일링에 기초한 지적구조 분석을 수행한 결과를 검토하였다. 또한, 이를 동시출현단어 분석에 기초한 지적구조 분석의 결과와 비교하였다. 이를 통해 지적구조 분석의 또 다른 방법인 프로파일링에서도 이와 유사한 결과가 도출되는 지를 살펴보고, 동시출현단어 분석과 프로파일링의 차이점을 검토하고자 하였다. 그 결과, 두 가지 키워드 유형별로 프로파일링에 기초한 지적구조 분석의 결과는 동시출현단어 분석과 유사한 차이가 있었다. 또한 프로파일링과 동시출현단어 분석에 기초한 지적구조 분석의 결과 간에도 주목할 만한 차이가 있었다. 따라서 키워드를 사용하는 지적구조 분석은 연구 목적에 따라 키워드 유형별 특성을 고려하여야 하며, 특정 분야의 연구 동향을 보다 명확하게 파악하기 위해서는 동시출현단어 분석보다 프로파일링에 기초한 지적구조 분석을 사용하는 것이 더 나은 결과를 기대할 수 있다.

Keywords

References

  1. Kang, Beomil & Park, Ji-Hong (2013). Profiling and co-word analysis of teaching korean as a foreign language domain. Journal of the Korean Society for Information Management, 30(4), 195-213. https://doi.org/10.3743/KOSIM.2013.30.4.195
  2. Kim, Pan Jun (2005). A study on updating the knowledge structure using new topic detection methods. Journal of the Korean Society for Information Management, 22(1), 191-208. https://doi.org/10.3743/KOSIM.2005.22.1.191
  3. Kim, Pan Jun (2006). A study on the automatic descriptor assignment for scientific journal articles using rocchio algorithm. Journal of the Korean Society for Information Management, 23(3), 69-89. https://doi.org/10.3743/KOSIM.2006.23.3.069
  4. Kim, Pan Jun (2015a). An analytical study on research trends of reading and reading instruction in overseas: focused on library and information science. Journal of the Korean Society for Information Management, 32(3), 69-97. https://doi.org/10.3743/KOSIM.2015.32.3.069
  5. Kim, Pan Jun (2015b). An analytical study on research trends of digital curation: focused on library and information science. Journal of the Korean Society for Information Management, 32(1), 265-295. https://doi.org/10.3743/KOSIM.2015.32.1.265
  6. Kim, Pan Jun (2016). An analytical study on performance factors of automatic classification based on machine learning. Journal of the Korean Society for Information Management, 33(2), 33-59. https://doi.org/10.3743/KOSIM.2016.33.2.033
  7. Kim, Pan Jun (2018). An analytical study on automatic classification of domestic journal articles based on machine learning. Journal of the Korean Society for Information Management, 35(2), 37-62. https://doi.org/10.3743/KOSIM.2018.35.2.037
  8. Kim, Pan Jun (2021). A study on the characteristics by keyword types in the intellectual structure analysis based on co-word analysis: focusing on overseas open access field. Journal of the Korean Society for Library and Information Science, 55(3), 103-129. http://dx.doi.org/10.4275/KSLIS.2021.55.3.103
  9. Kim, Pan Jun & Suh, Hye-Ran (2012). A study on the analysis of intellectual structure of electronic records research in korea using profiling. Journal of Korean Society of Archives and Records Management, 12(2), 29-50. https://doi.org/10.14404/JKSARM.2012.12.2.029
  10. Kim, Pan Jun & Lee, Jae Yun (2007). Descriptor profiling for research domain analysis. Journal of the Korean Society for Information Management, 24(4), 285-303. https://doi.org/10.3743/KOSIM.2007.24.4.285
  11. Lee, Jae-Yun (2006). A study on the network generation methods for examining the intellectual structure of knowledge domains. Journal of the Korean Society for Library and Information Science, 40(2), 333-355. https://doi.org/10.4275/KSLIS.2006.40.2.333
  12. Lee, Jae-Yun (2012). wnet.exe (version 0.4). (Software).
  13. Lee, Jae-Yun & Kim, Soojung (2016). A bibliometric analysis of research trends on disaster in Korea. Journal of the Korean Society for Information Management, 33(4), 103-124. https://doi.org/10.3743/KOSIM.2016.33.4.103
  14. Lee, Ji-Won (2019). A study on analysis of research trends and intellectual structure of cataloging field. Journal of the Korean Society for Information Management, 36(4), 279-300. https://doi.org/10.3743/kosim.pub.36.4.279001
  15. Chung, Eunkyung (2019). An investigation on scientific data for data journal and data paper. Journal of the Korean Society for Information Management, 36(1), 117-135. https://doi.org/10.3743/KOSIM.2019.36.1.117
  16. Jeong, Uiyeon & Choi, Sanghee (2019). Analysis on topics of digital preservation researches and courses. Journal of the Korean Society for Library and Information Science, 53(3), 25-43. https://doi.org/10.4275/KSLIS.2019.53.3.025
  17. Heo, Youngsoo & Park, Ji-Hong (2021). Exploring the research trends of learning strategies in korean language education using co-word analysis. Journal of the Korean Society for Information Management, 38(2), 65-86. https://doi.org/10.3743/KOSIM.2021.38.2.065
  18. Hull, D. A. (1994). Improving text retrieval for routing problem using latent semantic indexing. In: Croft B.W., van Rijsbergen C.J. (eds) SIGIR '94. Springer, London. https://doi.org/10.1007/978-1-4471-2099-5_29
  19. Joachims T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. In: Nedellec C., Rouveirol C. (eds) Machine Learning: ECML-98. ECML 1998. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol 1398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026683
  20. Joachims, T. (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In D. H. Fisher (ed.), Proceedings of ICML-97, 14th International Conference on Machine Learning (pp. 143-151), Nashville, US: Morgan Kaufmann Publishers, San Francisco, US. https://www.cs.cornell.edu/people/tj/publications/joachims_97a.pdf
  21. Khasseh, A. A., Soheili, F., Moghaddam, H. S., & Chelak, A. M. (2017). Intellectual structure of knowledge in i-Metrics. Information Processing & Management, 53(3), 705-720. https://doi.org/10.1016/j.ipm.2017.02.001
  22. Schapire, R. E., Singer, Y., & Singhal, A. (1998). Boosting and rocchio applied to text filtering. In: Proceedings of the ACM SIGIR '98, 215-223. https://doi.org/10.1145/290941.290996
  23. Schutze, H., Hull, D. A., & Pedersen, J. O. (1995). A Comparison of classifiers and document representations for the routing problem. In: Proceedings of the ACM SIGIR '95, 229-237. https://doi.org/10.1145/215206.215365
  24. Yang, Y. (1999). Evaluation of statistical approaches to text categorization. Information Retrieval, 1: 69-90. ttps://doi.org/10.1023/A:1009982220290
  25. Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., & Duan, Z. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967-972. https://doi.org/10.1002/asi.23437
  26. Zhao, W., Mao, J., & Lu, K. L. (2018). Ranking themes on co-word networks: Exploring the relationships among different metrics. Information Processing & Management, 54(2), 203-218. https://doi.org/10.1016/j.ipm.2017.11.005