• Title/Summary/Keyword: 동바리 하중

Search Result 30, Processing Time 0.022 seconds

Application of Ubiquitous Sensor Network at Construction Sites (건설 시공현장에서의 USN 활용)

  • Moon, Sung-Woo;Choi, Byoung-Young;Ji, Young-Eun;Seo, Ki-Jeong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.905-908
    • /
    • 2007
  • Concrete placement work is executed using temporary structures such as formwork, support, etc. The temporary structures could collapse when they are not properly supported, and need to be monitored for structural safety. This paper introduces a USN (Ubiquitous Sensor Network)-based monitoring system that are being tested at the Pusan National University for increasing structural safety. The system takes advantage of ubiquitous technologies together with a variety of sensors, which allows for wireless transmission of construction monitoring data. The temporary structures are constantly monitored to find out whether the structures are being supported in a stable condition. A field test is being conducted to acquire data, and use them for evaluating the safety condition of the construction operation.

  • PDF

An Analytical Study on the Behavior of Slab Structure Considering the Remodeling (리모델링 공사를 고려한 슬래브 구조물의 거동에 관한 해석적 연구)

  • Choi, Hoon;Joo, Hyung-Joong;Lee, Seung-Sik;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Due to the improvement and stabilization of the social environment, construction market in the urban region is under shrinking. According, researches to lengthen the service life of the existing building structures are under the way through the remodeling or maintenance of deteriorated structures other than the new constructions. Similar situations are widely discussed in the domestic building construction market and the social importance of the remodeling of the existing building structures is increased. Although the structural stability of the building is uncertain due to the frequent repairing and structural changing, the remodeling works are usually conducted. In general, documents such as drawings and calculations for the design of the deteriorated structure to be remodeled are not kept. Accident at the remodeling site frequently occur because of the lack of thorough understanding of changed situations such as loadings, loading paths, changing of the mechanical properties of material, etc. In this paper, using the finite element analysis method, we investigated the structural behaviors of slab in the remodeling building and the results are applied to remodeling construction, and the appropriateness of the remodeling works are evaluated.

Parametric Study on Long-Term Deflections of Flat Plates Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 장기 처짐에 대한 변수 연구)

  • Choi, Seung Min;Eom, Tae Sung;Kim, Jea Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • The structural designs of RC flat plates that have no flexural stiffness by boundary beams may be governed not by strength conditions but by serviceabilities. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the immediate and long-term deflections of a flat plate system, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections with considering construction sequences, concrete cracking, and long-term effects is proposed. Using the proposed method, the parametric study for deflections of flat plates is performed. With various conditions for slab construction cycle, the number of shored floors, tensile or compressive reinforcement ratio, compressive strength of concrete, construction live load, and slab thickness, the immediate deflection during construction and long-term deflections after completion are analyzed. The calculated results are compared with the serviceability limits offered by the structural design code.

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

Applications of Practical Analysis Scheme for Evaluating Effects of Over-Loads during Construction on Deflections of Flat Plate System (플랫 플레이트 시스템의 처짐에 대한 시공 중 과하중의 영향 평가를 위한 실용해석 기법의 적용)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • RC flat plate, which has no large flexural stiffness by boundary beams, may be governed by serviceability as well as strength condition. A construction sequence and its impact on distributions of construction loads among slabs tied by shores are decisive factors on immediate and long term performances of flat plate. The over-loading and tensile cracking in early-aged slabs significantly increase the deflection of flat plate system. In this study, for slab deflections, the practical analysis scheme using a linear analysis program is formulated with considering construction sequence and concrete cracking effects. The concept of the effective moment of inertia in calculating deflections of one-way bending member, that is presented in structural design codes, is extended to the finite element analysis of the two-way slab system of flat plates. Effects of over-loads during construction on deflections of flat plate system are analyzed by applying the proposed practical analysis scheme into the critical construction load conditions calculated from the simplified method.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

Effects of Minimum Horizontal Load on Structural Safety of System Supports (시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향)

  • Chung, Dae Hyun;Kim, Gyeoung Yun;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

Analysis of Design Wind Load Level for System Supports Considering Local Basic Wind Velocity and Construction Period (지역별 기본풍속과 공사기간을 반영한 시스템 동바리 설계 풍하중 분석)

  • Lee, Sun-Woo;Won, Jeong-Hun;Mha, Ho-Seong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.53-61
    • /
    • 2014
  • This study evaluated wind loads considering a local basic wind velocity and construction periods to define the level of applied wind loads for system supports. Structural responses of system supports were examined and compared to those of system supports with the level of wind loads following various standards and specifications for permanent and temporary structures. And, the maximum combined stress ratios were estimated to evaluate the structural safety of a considered system support. From results, it was found that the wind load level should be applied in accordance with construction periods when estimating the safety of system supports. Looking into the response by change of the basic wind velocity according to local regions, it is no need to consider wind loads in regions with the basic wind velocity of 30 m/s. However, it was analyzed that wind loads should be considered in the regions with the basic wind velocity of 40 m/s or above. In addition, wind loads should be considered in designing system supports located at the region with the basic wind velocity of 35 m/s starting from construction period of 1.5 years. The standard specification for temporary work was analyzed as an incorrect standard in evaluating wind loads, since it underestimated the response of system supports in accordance with the local basic wind velocity and construction periods.

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Development of Three Dimensional Analysis Method of High-Rise Buildings Considering the Construction Sequence and the Inelastic Behavior (시공 단계 및 비탄성거동을 고려한 초고층 건축물의 3차원 해석 기법 개발)

  • Yang, Joo-Kyoung;Seol, Hyun-Cheol;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2008
  • With consideration of the ongoing construction of high-rise buildings, it is becoming increasingly important to be able to accurately predict the behavior of them on the stage of design, construction and service. Even though many researchers have developed the analysis method to predict the behavior of high-rise buildings, their studies were based on the two dimensional frame structures composed of line elements such as beams and columns. Recently the high-rise buildings with flat-plate system is widely used because of its advantages. In this study a three dimensional analysis method is developed to analyze the behavior of the high-rise buildings with flat-plate system since it is difficult to model the structural systems reasonably with the existing two dimensional analysis method. The analysis method considered the construction sequence including the temporary work such as installation of form, removal of form, installation of shore, and removal of shore. Line elements were used to describe columns, beams, and shores and plate elements were used to model slabs. The creep and drying shrinkage of concrete were also considered to account for the inelastic behavior of concrete.