• Title/Summary/Keyword: 동력 하강 단계

Search Result 4, Processing Time 0.021 seconds

Control of powered descent phase for a Lunar lander using PID controller (PID 제어기를 이용한 달착륙선의 powered descent phase 유도제어)

  • Jo, Sung-Jin;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • The moon landing is composed of the de-orbit descent phase, powered descent phase, and the powered descent phase is divide into 3-sub phase of the braking, approach, final landing phase. In this paper, the lunar lander perform landing control using 3-sub phase of optimal trajectory. First, generate the reference trajectory using gauss pseudo-spectral method. Thereafter generate PID controller using altitude and velocity error in each direction. Finally the lunar lander landing system constitute using the Simulink of Matlab, and perform simulation.

Analysis of Optimal Landing Trajectory in Attitude Angular Velocity Influence at Powered Descent Phase of Robotic Lunar Lander (무인 달착륙선의 동력하강단계에서 자세각속도 영향에 따른 최적화 착륙궤적 분석)

  • Park, Jae-ik;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • In this paper, we propose a lunar landing scenario of a robotic lunar landing mission and implements an optimal landing trajectory at the powered descent phase based on the proposed scenario. The change of attitude of the lunar lander in the power descent phase affects not only the amount of fuel used but also sensor operation of image based navigation. Therefore, the attitude angular velocity is included in the cost function of the optimal control problem to minimize the unnecessary attitude change when the optimal landing trajectory generates at powered descent phase of the lunar landing. The influence of the change of attitude angular velocity on the optimal landing trajectory are analyzed by adjusting the weight of the attitude angular velocity. Based on the results, we suggest the proper weight to generate the optimal landing trajectory in order to minimize the influence of the attitude angular velocity.

A Study on the Safe Altitude of Aircraft turning back to the Runway with Power Failure just after Take Off (이륙 직후 동력 상실시 활주로로 선회 착륙을 위한 안전 고도에 관한 연구)

  • Song, Byung-Heum;Kim, Kap-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • 본 연구에서는 항공기 사고의 70%이상을 차지하는 이 ${\cdot}$ 착륙단계 중에서, 이륙 직후 저고도에서 동력이 상실되었을 경우에 이륙활주로 방향으로 Turning Back하는 것은 어떠한 안전 한계를 지니고 있는지를 알아보기 위하여, 우선 조종사에 대한 설문 조사를 실시하여 비행 경력별로 이륙 직후 동력 상실시의 비상 처치 경향과 위험에 처할 확률을 조사하였다. 그리고 실제 활공 성능이 우수한 M20J 항공기와 기동 성능이 우수한 FH20 항공기를 이용한 비행 시험을 통하여 이륙 직후 Turning Back to Runway조작 시의 고도 손실과 선회시 하강율을 실험 자료로 구하였다. 비행 시험 자료를 비교 적용함은 물론 선회 소요 시간과 고도 손실, 선회율과 활공 속도와의 관계 등의 항공 역학적 이론을 적용한 분석 근거에 기초하여 안전하게 Turning Back to Runway 조작을 시작할 수 있는 안전 고도 한계 및 선회율을 제시하였다.

  • PDF

Prediction of Battery Performance of Electric Propulsion Lightweight Airplane for Flight Profiles (비행프로파일에 대한 전기추진 경량비행기의 배터리 성능 예측)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.15-21
    • /
    • 2021
  • Electrically powered airplanes can reduce CO2 emissions from fossil fuel use and reduce airplane costs in the long run through efficient energy use. For this reason, advanced aviation countries such as the United States and the European Union are leading the development of innovative technologies to implement the full-electric airplane in the future. Currently, the research and development to convert existing two-seater engine airplanes to electric-powered airplanes are underway domestically. The airplane converted to electric propulsion is the KLA-100, which aims to carry out a 30-minute flight test with a battery pack installed using the engine mounting space and copilot space. The lithium-ion battery installed on the airplane converted to electric propulsion was designed with a specific power of 150Wh/kg, weight of 200kg, and a C-rate 3~4. This study confirmed the possibility of a 30-minute flight with a designed battery pack before conducting a flight test of a modified electrically propelled airplane. The battery performance was verified by dividing the 30-minute flight profile into start/run stage, take-off stage, climbing stage, cruise stage, descending stage, and landing/run stage. The final target of the 30-minute flight was evaluated by calculating the battery capacity required for each stage. Furthermore, the flight performance of the electrically propelled airplane was determined by calculating the flight availability time and navigation distance according to the flight speed.