• Title/Summary/Keyword: 동결온도

Search Result 460, Processing Time 0.035 seconds

Ice-Nucleation Activity of Pseudomonas syringae Isolated in Korea (한국에서 분리한 Pseudomonas syringae의 빙핵활성)

  • Kim Yong Hwan;Kim Young Cheol;Cho Baik Ho;Kim Ki Chung
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.180-186
    • /
    • 1987
  • Cell suspensions of two isolates of Pseudomonas syringae. PS8401 from sweet persimon and PS8402 from tea plant, were active in ice nucleation at -2.5 and $-3.8^{\circ}C$, respectively. Ice nucleation at those temperature was, using micropipette method, detected in suspensions ($10^8$ olony forming unit/ml of distilled water) of cells that had been grown on nutrient agar supplemented with $2.5\%$ glycerol. Using the same method, on the other hand, the freezing temperature of distilled water only was approx. $-21.8^{\circ}C$, and those of various plant saps including corn were lower than $-11.6^{\circ}C$. Corn seedlings sprayed with cell suspensions $(10^8\;cfu/ml)$ of nutrient broth) of PS8401 began to be damaged at $-2^{\circ}C$ and were almost completely damaged at $-4^{\circ}C$, whereas seedlings sprayed with nutrient broth only were not injured until the temperature down to $-9^{\circ}C$. Amounts of frost damage measured 48 hr after application of PS8401 suspensions increased as applied bacterial cell densities were increased. Ice-nucleation activity of the cell suspensions in vitro increased with increasing the number of cells in suspension. The activity also affected by growth-medium composition or growth-temperature. Ice nucleation thus occured at -4.0, -4.4 and $-7.2^{\circ}C$ in suspensions $(10^2\;cfu/ml)$ of PS8401 that had been grown at$25\%$ nutrient agar with $2.5\%$ glycerol, nutrient agar with $2.5\%$ glucose and nutrient agar only, respectively, and occured at -4.0 and $-7.6^{\circ}C$ in suspensions $(10^2\;cfu/ml)$ of PS8401 hat had been grown on nutrient agar with $2.5\%$ glycerol at $15\~25^{\circ}C$ and $30^{\circ}C$, respectively.

  • PDF

Behavior Characteristics of Water Supply Pipeline Due to Freezing Temperature (동결온도가 상수도관의 거동에 미치는 영향)

  • Shin, Eun Chul;Ryu, Byung Hyun;Kang, Hyoun Hoi;Hwnag, Soon Gab
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents the results of a field pilot test about deformation of water supply pipelines due to freezing temperature. There is a difference between for frost heaving load to act on the water supply pipelines. If the Marston-Spangler theory is only considered for the frost heaving load to act on the water supply pipeline, it is likely to deviate from the safety of the water supply pipeline, strains of the water supply pipeline show a tendency of smaller value than the value of numerical analysis.

Physicochemical Properties of Onion Powder as Influenced by Drying Methods (건조방법에 따른 양파분말의 품질특성)

  • Kim, Hye-Ran;Seog, Eun-Ju;Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.342-347
    • /
    • 2007
  • Physicochemical properties of onion powder as influenced by drying methods were investigated. Moisture contents of onion powder were 13.29%, 12.99%, and 10.78% for samples dried using hot-air dryer, freeze dryer, and vacuum dryer, respectively. There were no significant differences in crude fat, crude protein, and crude ash content (p>0.05) depending on the drying methods. Samples prepared by freeze drying showed a significantly higher L-value as compared with those prepared by hot-air and vacuum drying (p<0.05). Scanning electron micrographs showed that freeze drying produced smaller particle-sized sample which in turn resulted in the higher porosity of the sample. Freeze dried samples revealed significantly lower degree of rehydration than other samples (p<0.05) probably due to small particle size of the sample. Water solubility of freeze dried sample appeared to be higher than that of other drying methods while the swelling ratio of the same sample appeared to be lower than that of the others. Browning index was significantly lower in samples prepared by freeze drying (p<0.05) but not significantly different between samples dried by hot-air and vacuum drying. Vitamin C content was higher in freeze dried onion powder due to the lower temperature applied to the sample. Freeze dried onion powder contained significantly lower amount of total polyphenol and higher amount of total sugar as compared to other samples (p<0.05).

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Effects of Salt Concentration on the Rehydration Characteristics of Freeze Dried Mook (재수화용액의 염농도에 따른 동결건초 도토리 묵의 재수화 특성)

  • 윤광섭;황정섭;정헌식;양경미
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.313-319
    • /
    • 2001
  • In order to produce the high quality rehydrated acorn Mook(Korean tradition gel flood) that enhance acceptability, the optimum condition was investigated for the rehydration process of dried Monk as salt concentration(0, 1, 2%), temperature(20, 70, 80, 90$^{\circ}C$) and time. The estimation of moisture gain, rehydration efficiency was analyzed statistically. The surface color md seniory evaluation were undertaken to evaluate the rehydrated Mook quality The optimum rehydration time was decided to 15 minutes and it takes 3 minutes for the cooling tilde. The moisture gain increased as the rehydration temperature increase. And the moisture gain and moisture gain rate were higher at 1% salt solution than other concentration. As the rehydration efficiency, surface color and sensory properties of rehydrated Mook, 1% salt treatment was superior.

  • PDF

Studies on Thermodynamics Characteristics of Fishes in Freezing Processes -II . Changes on Thermophysical Properties of Fishes in Heating and Freezing Processes- (동결과정 중의 어육의 열력학적 특성에 관한 연구 -II 가열 및 동결 과정 중의 어육의 열물성 변화-)

  • KIM Jeong-Han;CHOI Yeung-Joon;KIM Min-Yong;KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.340-344
    • /
    • 1991
  • On heating and fleering food-stuffs, it is very important to obtain informations about thermophysical properties of fishes for designing of freezing and heating equipment and analyzing of physico-chemical reaction during storage. It is particularly necessary to measure denaturation enthalpy, temperature, latent heat of freezing, activation energy, enthalpy, entropy and free energy on freezing and heating rate. In this study, DSC was used to study effects of freezing and heating rate on thermophysical properties and denaturation temperature on scanning rate $2.5-10.0^{\circ}C/min$. On increasing scanning rate, denaturation temperature of protein and lipid incresed and freezing point, activation energy, enthalpy, entropy were decreased. In freezing process free energy of fishes were found to be $14.2-18.9 kcal/mol$.

  • PDF

Changes of Volatile Odor Components in Kimchi by Freeze-drying (동결건조에 의한 김치의 휘발성냄새성분의 변화)

  • Ko, Young-Tae;Kang, Jung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.559-564
    • /
    • 2002
  • Volatile odor components of ripened and ripened/freeze-dried kimchi were analyzed by gas chromatograph. As ripening temperature of kimchi increased, pH of kimchi decreased, viable cell count of lactic acid bacteria of kimchi increased up to ripening temperature of $15^{\circ}C$, and sensory properties of kimchi gradually decreased. Allyl mercaptan, methyl allyl sulfide, dimethyl disulfide, diallyl sulfide, diallyl disulfide, and ethanol were detected in ripened kimchi and ripened/freeze-dried kimchi. The amounts of allyl mercaptan, methyl allyl sulfide, diallyl sulfide, and ethanol increased as the ripening temperature increased, while those of dimethyl disulfide and diallyl disulfide decreased. Freeze-drying for 24 hr removed most of the above-mentioned volatile odor components, which were further removed by freeze-drying for 48 hr.

Evaluation of Freezing Rate of Marine Clay by Artificial Ground Freezing Method with Liquid Nitrogen (액화질소를 이용한 인공동결공법 적용시 해성 점토지반의 동결속도 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.555-565
    • /
    • 2018
  • Nowadays, the artificial ground freezing (AGF) method has been used in many geotechnical engineering applications such as temporary excavation support, underpinning, and groundwater cutoff. The AGF method conducts the freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as an excavation support and cutoff wall. Two refrigerants of brine with the freezing temperature of $-20{\sim}-40^{\circ}C$ and liquid nitrogen with the freezing (evaporating) temperature of $-196^{\circ}C$ are commonly being used in geotechnical applications. This paper performed a series of field experiments to evaluate the freezing rate of marine clay in application of the AGF method. The field experiments consisted of the single freezing-pipe test and the frozen-wall formation test by circulating liquid nitrogen, which is a cryogenic refrigerant, into freezing pipes constructed at a depth of 3.2 m in the ground. The temperature of discharged liquid nitrogen was maintained through the automatic valve, and the temperature change induced by AGF method was measured at the freezing pipes and in the ground with time. According to the experimental results, the single freezing-pipe test consumed about 11.9 tons of liquid nitrogen for 3.5 days to form a cylindrical frozen body with the volume of about $2.12m^3$. In addition, the frozen-wall formation test used about 18 tons of liquid nitrogen for 4.1 days to form a frozen wall with the volume of about $7.04m^3$. The radial freezing rate decreased with increasing the radius of frozen body because the frozen area at a certain depth is proportional to the square of the radius. The radial freezing rate was formulated as a simple equation.