• Title/Summary/Keyword: 동결모래

Search Result 27, Processing Time 0.021 seconds

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Numerical Analysis of Frost Depth behind the Lining of Road Tunnel in Gangwon Province (수치해석을 통한 강원지역 도로터널 라이닝 배면지반의 동결깊이 분석)

  • Son, Hee-Su;Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.15-23
    • /
    • 2017
  • Gangwon Province, located in the northeastern part of South Korea, is the coldest area in South Korea with 90% of the total area as mountainous. Therefore, tunnel damage has been reported continuously in winter. But there has been lack of researches on frost heave occurring behind tunnel lining. In this study, numerical analysis was conducted to investigate the frost depth in road tunnel constructed in Gangwon province. Based on the database on road tunnel and weather in Gangwon province, a standard tunnel shape and geotechnical properties of ground was determined. And then thermal analysis for the frost depth according to the temperature change and ground conditions were conducted. Analysis result showed that the sensitivity to frost heave of metamorphic rock and sedimentary rock is higher than sand. Lower initial ground temperature leads to deeper frost depth and consequently increases frost damage. In addition, lining thickness, specific heat capacity, and thermal conductivity also affect greatly on the variation of frost depth.

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.

An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils (동결토의 동상팽창압 특성에 관한 실험적 연구)

  • 신은철;박정준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Most of land reclamation projects are being implemented along the south and west coastal lines of the Korean Peninsula. The earth structures and in-ground LNG tank, and buildings can be constructed using artificial freezing method on the reclaimed land to control the uplift pressure caused by capillary forces. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable frost heaving pressure was developed. Decomposed granite soils, silty soil, and sandy soil were used in the laboratory freeze test which is sometimes subjected to thermal gradients under closed-systems. A major concern has been the ability to predict the frost heaving pressure over the results of relatively short-term laboratory tests. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with time elapse. The degree of saturation versus heaving pressure curve is presented for each soil sample and the maximum pressure is closely related to this curve. TDR apparatus was used to measure the volumetric water content by the measurement of unfrozen water contents of frozen soils. Unfrozen water increased in soils containing a high percentage of fine-grained particles. In fine-grained soils with strong attractive farces between soil grains and water molecules, additional water is attracted into the pores leading to further volume changes and ice segregation.

Evaluation on Basic Properties of Crushed Sand Mortar in Freezing-Thawing and Sulfate Attack (동결융해와 황산염의 복합작용을 받는 부순모래 모르타르의 기초 특성 평가)

  • Kim, Myeong-Sik;Baek, Dong-Il;Choi, Kang-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2009
  • Exposed to various environments, concrete confronts degradation by a lot of physical and chemical reaction. Though so many experiments and theorizations on the single condition of concrete degradation have been carried out by constant studies, the truth for now is that there are few studies on the compound phenomenon of degradation related with marine environments. Accordingly, this study measured the degree of degradation in the change of external shape, the change of unit weight and compressive strength, ultrasonic velocity test, and the change of length, etc. after exposing the specimen of cement mortar to the environment between 0 cycle and the maximum of 300 cycles under the condition of aquatic curing, freezing and thawing, and compound degradation, using mineral admixture effective for concrete degradation as a binder. The result indicated that the case of adding mineral admixture showed greater resistance than that of using OPC only, and specifically, the specimen with the additive of slag powder and three component system showed very excellent resistance to freezing and thawing, and compound degradation.

A Study on the Development Lightweight Aggregate using Recycled-Paint for Reduction in Freezing Ground (단열골재 개발을 통한 동토방지 기술개발에 관한 연구)

  • Moon, Jong-Wook;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is progressed function ratio, it's trued taste by an experiment to present data for human work light weight aggregate development that use clink ash progressed liquid limit, small success limit, wear loss in quantity, sand equivalent, sieve cutting examination. 80:20's match of function rain examination is 1.4, and that use rubble aggregate as recyeled-panit lightweight aggregate's capacity ratio increases by 1.0 increase of function rain many. Also, examination multiplied delicate flavor gradually according to increase of the mixing rate, and absorption coefficient increased. This is judged by phenomenon that appear by special quality upper recycled-panit of polystyrene bid and porosity's increase between lightweight aggregate. It is case that use aggregate of wear loss in quantity is 13.5 in sand equivalent and a wear loss in quantity experiment and although case that mix 20% increases by 14.4, this phenomenon by weak tissue of lightweight aggergate be judged. When it's as a these experiment, the statue prevention floor of a street improvement specifications is prescribing so that satisfy by sand equivalent 20, CBR 10. This is showed result that this satisfies in quality standard all in match experiment ago that see.

Mechanical and Hydraulic Stabilizing Method of Steel Pipe Propulsion Tunneling Using Liquid Nitrogen (액체질소를 이용한 강관압입공법의 역학적 수리학적 안정화공법)

  • Ji, Subin;Lee, Kicheol;Lee, Ju-hyung;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2016
  • In this study, to prevent possible collapse caused by hydraulic or mechanical instability, liquid nitrogen injection method is developed and implemented at the tip of drilling auger of steel pipe propulsion tunneling. In this study, 1/5-scale model auger and sand chamber were manufactured. The prototype diameter of steel pile (or casing) is assumed about 1,000 mm. For the frictional sandy soils and plastic weathered soils, liquid nitrogen injection methods were tested varying water contents of the soils. For the induced hydraulic instability, the ground near the drilling auger was frozen within approximately 5 minutes preventing mechanical collapse and water infiltration. Securing stability of steel pile propulsion tunneling using liquid nitrogen was much more effective for which the water content of the soil somewhat exceeds the optimum water content.

The Service Life Prediction of Concrete with Crushed Sand in Condition of Freezing and Thawing (동결융해작용을 받는 부순모래 콘크리트의 수명예측)

  • Kang, Su-Tae;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa;Koh, Kyung-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this study, we predicted the service life against the freezing and thawing. as a result, we found that in the case of using the low quality crushed sand with high water-cement ratio, there is the possibility of deterioration. but in any other case, we concluded that there is no chance to deteriorate if we have the required air contents by using AE agent. we are going to improve the method to evaluate more exactly the durability of the concrete with crushed sand by acquiring data from the specimen which are exposed to field for long time.

  • PDF