• Title/Summary/Keyword: 동결과 융해

Search Result 847, Processing Time 0.025 seconds

Cracking and Durability Characteristics of High-early-strength Pavement Concrete for Large Areas using Calcium Nitrate (질산칼슘 혼화재를 사용한 대단면 급속 포장 콘크리트의 균열 및 내구특성)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.101-108
    • /
    • 2009
  • The performance of high-early strength pavement concrete for large areas is influenced by the physical and chemical environment during service life. Generally, penetration, diffusion, and absorption of harmful materials that exist outside the concrete cause damage to its structure. Thus, we have to use a mixture for durability to keep the required quality for the planned service life. Moreover, in using high-early-strength cement and accelerators, a high heat of hydration to create the initial strength can cause cracks. Based on evaluations from optimal mix proportions of high-early-strength pavement concrete for large areas, we conducted water permeability, abrasion resistance, freeze-thaw, plastic, drying, and autogenous shrinkage tests. Test result showed that a mix of accelerator and PVA fibers showed excellent performance.

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Evaluation of Hydrophobic Performance and Durability of Concrete Coated with Cellulose Nanofiber Mixed Antifouling Coating Agent (셀룰로오스 나노섬유 혼합 방오코팅제가 도포된 콘크리트의 소수성능과 내구성능 평가)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2023
  • Marine and hydraulic structures are subject to durability damage not only due to the penetration of sea water but also due to the attachment of marine organisms. Therefore, in this study, we tried to develop an antifouling coating agent with self-cleaning function for marine concrete. It was confirmed that the antifouling coating agent mixed with AKD, cellulose nanofibers and BADGE had sufficient antifouling performance at a well hydrophobicity of around 140° in contact angle and an inclination angle of 15°. In the abrasion resistance test of the surface, only a maximum loss of 0.015 g occurred. In the durability test, as a result of the chloride ion permeation test, almost no chloride ion permeation occurred in the variable where the coating agent was applied, and carbonation and freeze-thaw damage also rarely occurred, so it was analyzed that it was effective in securing durability of concrete.

Accelerated Laboratory Experiments Investigating Weathering of Volcanic Rocks from Yuchon Group Exposed to Seawater and Acidified Distilled Water (실내인공풍화가속실험을 통한 해수와 산성증류수에 대한 유천층군 화산암의 풍화 특성 연구)

  • Ik Woo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • Laboratory tests of accelerated artificial weathering compared the effects of seawater and acidified distilled water on rock weathering. The experiments simulated chemical and physical weathering of five different types of volcanic rock by applying 45 freeze-thaw cycles using seawater and acidified distilled water (pH 3), both at 70℃. The physical properties and uniaxial compressive strength (UCS) of the rocks were measured after 15 and 45 cycles of artificial weathering. Most of degradation of physical properties appeared within the first 15 cycles, and acidified distilled water had a greater effect than seawater. Analysis of variance (ANOVA) statistically evaluated the differences in UCS of the different rock types during the tests. The rate of UCS reduction after 45 cycles was similar across the samples, being independent of the rock type and the trend of changes in physical properties. In contrast to the changes in the physical properties, the UCS was more affected by seawater than by acidified distilled water.

Viability Assessment of Fresh and Frozen-thawed Dog Spermatozoa by Flow Cytometry (Flow Cytometry에 의한 개 신선정액과 동결정액의 생존성 분석)

  • Hong Y. M.;Kim Y. J.;Yu I.;Ji D. B.;Kim M. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.167-172
    • /
    • 2004
  • This study was performed to examine the correlations among dog sperm viabilities evaluated by flow cytometry, by microscopic evaluation (ME), by carbo-xifluorescein diacetate and propidium iodide (CFDA/PI) and by hypoosmotic swelling (HOS) test. Semen were collected from 5 dogs ranging in age from 2 to 4 years. Each ejaculate was divided into 3 aliquots and different proportions of freeze-killed cells were added to each aliquot (1:0, 1:1 and 1:3). In the other experiment, semen was extended with Sweden extender containing 5% glycerol and equex STM paste, and frozen using liquid nitrogen vapor. Fresh and frozen-thawed dog sperm viability were assessed by flow cytometry using PI staining method. The accuracy of flow cytometry was evaluated by comparing with other classic assessments, microscopic evaluation, epifluorescence microscopic analysis using CFDA/PI, and HOS test. High correlations of sperm viabilities were found among flow cytometry, epifluorescence evaluation, HOS test (p<0.01) in fresh semen. Especially, sperm viability assessed by HOS test was highly correlated with viability by flow cytometry in all the ratios of live and dead spermatozoa, 1:0, 1:1 and 1:3 (p<0.01). The viability evaluated by ME were significantly correlated with that by flow cytometry in ratios of 1:0 and 1:3 (p<0.05) however, there was no significance in ratio of 1:1. The viability evaluated by C/p were highly correlated with that by flow cytometry in ratio of 1:0 and 1:1 (p<0.01) and significantly correlated in ratio of 1:3 (p<0.05). In frozen-thawed spermatozoa, the viability determined by HOS test was considerably correlated with that by flow cytometry (p<0.01). There was significant correlation between the viabilities by ME and by flow cytometry (p<0.05). But the viability evaluated by CFDA/PI was not correlated with viability by flow cytometry. The result from this study validate the use of flow cytometry as a precise method for assessing the viability of fresh and frozen-thawed dog spermatozoa.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Presence of Intact Cumulus Cells during In Vitro Fertilization Inhibits Sperm Penetration but Improves Blastocyst Formation In Vitro (돼지 난자의 체외 수정에 있어서 난구 세포의 존재가 정자 침투율 및 배 발육에 미치는 영향)

  • Yong, H.Y.;Lee, E.
    • Journal of Embryo Transfer
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study was conducted to examine the role of intact cumulus cells during in vitro fertilization (IVF) on sperm penetration, male pronuclear (MPN) formation and subsequent embryo development of oocytes matured and fertilized in vitro. Cumulus-oocyte complexes obtained from the slaughtered gilt ovaries were matured for 44 h in TCM199 containing 10% porcine follicular fluid, epidermal growth factor and hormones. After maturation culture, denuded oocytes or oocytes with intact cumulus cells were coincubated with frozen-thawed boar semen for 8h in a modified tris-buffered medium containing 5mM caffeine and 10mM calcium chloride. Putative zygotes were fixed and examined for sperm penetration and MPN formation (Experiments $1{\sim}3$), or cultured in North Carolina State University-23 medium fo. 156 h (Experiment 3). In Experiment 1, sperm penetration was examined after insemination of denuded oocytes and oocytes with intact cumulus cells at the concentration of $7.5{\times}10^5$ sperm/ml. Optimal sperm concentration for IVF of cumulus-intact oocytes was determined in Experiment 2 by inseminating intact oocytes with $2{\sim}5{\times}10^6$ sperm/ml. In Experiment 3, denuded or intact oocytes were inseminated at the concentrations of $7.5{\times}10^5$ and $4.0{\times}10^6$ sperm/ml, respectively, and in vitro embryo development was compared. Sperm penetration was significantly (p<0.01) decreased in cumulus-intact oocytes compared to denuded oocytes (35.2% vs. 77.4%). Based on the rates of sperm penetration and normal fertilization, the concentration of $4.0{\times}10^6$ sperm/ml was optimal for the IVF of intact oocytes compared to other sperm concentrations. The presence of intact cumulus cells during IVF significantly (p<0.05) improved embryo cleavage (48.8% vs. 58.9%), blastocyst (BL) formation (11.0% vs. 22.8%) and embryo cell number $(22{\pm}2\;vs.\;29{\pm}2\;cells)$ compared to denuded oocytes. In conclusion, these results suggest that intact cumulus cells during IVF inhibit sperm penetration but improve embryo cleavage, BL formation and embryo cell number of porcine embryos produced in vitro.

Exogenous DNA Transfer by Intracytoplasmic Sperm Injection in Porcine Oocytes (돼지에 있어서 난자내 정자 직접 주입에 의한 외래 유전자 도입에 관한 연구)

  • Ahn, S. Y.;Lee, H. T.;K. S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.339-347
    • /
    • 2001
  • Sperm-mediated DNA transfer has a potential to markedly simplify techniques for the generation of transgenic animals. The exogenous DNA transfer by intracytoplasmic sperm injection (ICSI) procedure has been recently introduced in the production of transgenic animals. In this study, the developmental competence and tile expression rates of transgene were investigated after injection of spermatozoon or sperm head with enhanced green fluorescent protein (EGFP) gene into the mature porcine oocytes. The porcine oocytes were injected with intact sperm, membrane-disrupted sperm or sperm head. After injection. embryos were cultured in NCSU23 medium up to the blastocyst stage, and the developmental competence and expression rates were studied. The developmental rate (67.0%) of sperm injection group was higher than that (59.7%) of sperm head injection group, and the rates of EGFP expression were also significantly different between sperm injection and sperm head injection groups (42.1 vs 20.0%) (F<0.05). In the porcine oocytes injected with sperm treated with different methods of membrane disruption, the removal of sperm membrane did not alter the developmental competence of embryos. The rate of blastocysts at 7 days after injection with intact and membrane disrupted sperm were 15.0 and 14.2%, respectively. The EGFP expression rates, 38.4% in embryos injected with frozen-thawed sperm was higher than that, 22.4% of embryos injected with the Triton X-100 treated sperm. Prior to injection, sperm were cultured in different EGFP gene concentrations from 0.Ol to 1ng/u${mu}ell$. However, no significant difference in developmental rates of embryos among different concentrations of EGFP gene were observed. The highest expression rate of EGFP gene, 37.4% was obtained from the embryos injected with spermatozoa treated with 0.1 ng/${mu}ell$ EGFP gene. These results suggested that exogenous DNA could be attached to the membrane disrupted sperm, and that these sperm could be used as a vector carrying foreign DNA into embryos.

  • PDF

Morphogenetic Environment of Jilmoe Bog in the Odae Mountain National Park (오대산국립공원 내 "질뫼늪"의 지형생성환경)

  • Son, Myoung-Won;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • The wetland is very important ecologically as a habitat of diverse organisms. The purpose of this paper is to elucidate the morphogenetic environment of Jilmoe Bog found in the Odae Mountain National Park Jilmoe Bog is located in the high etchplain(1,060m) where Daebo Granite which had intruded in Jura epoch of Mesozoic era has weathered deeply and has uplifted in the Tertiary. The annual mean temperature of study area is $5.3^{\circ}C$, the annual precipitation is 2,888mm. The minimun temperature of the coldest month(january) is below $-30^{\circ}C$ and the depth of frozen soil is over 1.6m. Jilmoe bog consists of a large bog and a small bog. The length of the large bog is 63m and its width is 42m. The basal surface of Jilmoe bog is uneven. Jilmoe bog is a string bog fanned due to frost actions. In String bog, its surface is wavy with stepped dry hills and net-like troughs crossing hill slope. It seems that string bog is related to the permofrost or seasonal permofrost of cold conifer forest(taiga) zone(where the depth of frozen soil is very deep in the least in winters). String bog is a kind of thermokarst that frozen soil thaws differentially locally in declining permofrost and ground surface becomes irregular. There is turf-banked terracette of width $30{\sim}40cm$ in the headwall of small cirque-type nivation hollow formed at footslope of Maebong mountain around Jilmoe bog. This turf-banked terracette is formed by the frost growth of soil water below grass mat in periglacial climate environment. Where water is plentiful such as a nivation follow${\sim}$valley corridor and a headwall of valley, turf patterned grounds of width $30{\sim}50cm$ are found. This turf patterned ground is 'unclassified patterned ground', earth hummock. In conclusion, Jilmoe bog is a string bog of thermokarst that the relief of ground surface is irregular according to locally differentially thawing of permofrost(frozen soil). Jilmoe bog is high moor, its surroundings belongs to periglacial environment that turf-banked terracette and turf patterned ground are fanned actively.

  • PDF

Study on Material Characteristics and Conservation Methods for Tracksite of Cretaceous Dinosaurs and Pterosaurs of Jeongchon area in Jinju, Korea (진주 정촌면 백악기 공룡·익룡발자국 화석산지의 재질특성 및 보존 방안 연구)

  • Ji Hyun Yoo;Yu Bin Ahn;Myoung Nam Kim;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.697-714
    • /
    • 2023
  • The Tracksite of Cretaceous Dinosaurs and Pterosaurs in Jeongchon, Jinju was discovered in late 2017 during the construction of the Ppuri industry complex. This site is a natural heritage site with a high paleontological value, as it preserves fossils of various types of dinosaurs, pterosaurs, and animal traces at a dense concentration. In this study, we surveyed that physical weathering such as joint, crack, scaling, exfoliation, and fragmentation occurred through field research in the fossil site, and conducted basic research on conservation science to reduce the damage. To this end, among the eight levels identified after excavation, the rocks of Level 3, which yielded a large number of theropod footprint fossils, and Level 4, which yielded pterosaur footprint fossils, were analyzed for material characteristics and evaluation of the effectiveness of consolidation and adhesion. This results showed that the rocks in the Level 3 stratum were dark gray siltstone and the rocks in the Level 4 stratum were dark gray shale, which contained a large amount of calcite and were composed of quartz, plagioclase, mica, alkali feldspar, and other clay minerals, which are likely to be damaged by rainfall under external conditions. As a result of conducting an artificial weathering experiment by dividing the probationary sample into four groups: untreated, consolidation treatment, anti-swelling treatment, and adhesive treatment, the consolidation and the swelling inhibitor showed an effect immediately after treatment, but did not show a blocking effect under a freezing-thawing environment. The adhesive showed that the adhesive effect was maintained even under freezing-thawing conditions. In order to preserve the fossil sites at Jeongchon in the future, in addition to temporary measures to block the inflow of moisture, practical measures such as the construction of protective facilities should be prepared.