• Title/Summary/Keyword: 돔 구조

Search Result 256, Processing Time 0.023 seconds

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Application of TMD for Seismic Response Control of Dome Structure (돔 구조물의 지진응답 제어를 위한 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • Vibration control devices are classified into passive, semi-active and active device. TMD(Tuned Mass Damper) is one of the passive control device that is mainly used to reduce vibration level of building structure and bridge structure. In this study, the application of passive tuned mass damper(TMD) to seismic response control of dome structures has been investigated. Because star dome structure has primary characteristics of dome structures, star dome structure was used as an example dome structure that is subjected to horizontal or vertical seismic loads. From this numerical analysis, it is shown that seismic response are influenced by vibration modes and it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure.

피동형 격납건물 냉각계통 내 돔 효과의 수치적 해석에 관한 연구

  • 전지한;박홍준;이은철
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.298-303
    • /
    • 1997
  • 실제의 격납건물의 구조는 하부 원통형의 구조를 가지는 영역과 상부 돔 형태와 굴뚝 형태의 구조를 가지는 영역으로 나눌 수 있다. 하부 원통형의 구조만을 고려한다면, 고온의 철제 벽면과 콘크리트 벽면 사이의 gap 크기에 비해서 원통의 반지름이 상대적으로 매우 큰 값을 가지기 때문에 2차원 무한평판으로 가정하는 것이 가능하다. 그러나 돔 및 굴뚝 영역에서는 높이가 높아질수록 돔 단면직경이 감소하고 굴뚝 영역도 유동단면적이 작은 원통의 구조를 가져 2차원 무한평판의 가정에 많은 무리가 따른다. 앞에서 명시한 세 가지의 격납건물 형태에 있어서 ASPWR의 경우는 굴뚝을 포함한 영역까지도 무한평판으로 가정하는 것이 가능하나(돔에서의 열전달 단면적이 하부의 열전달 단면적에 비해 매우 작다는 가정을 한다면) 나머지 AP600과 HWRF의 격납건물에 있어서는 상부까지도 무한평판 가정을 사용하는 것에는 무리가 있다. 본 연구에서는 일반적인 유체해석 코드인 FLUENT V4.3을 이용하여 실제 격납건물 구조에 대한 분석을 시도하여 무한평판 구조에 대한 가정이 과도한 열전달량을 예측하고 있음을 확인하였다.

  • PDF

A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image (암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member (고충진 압출성형 합성목재를 이용한 모듈러 돔의 구조모델링에 관한 연구)

  • Shon, Su-Deok;Kwak, Eui-Shin;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2015
  • This paper aims at developing an environmentally friendly modular dome structure system with highly filled extrusion wood-plastic composite (WPC) member, and manufacturing a real-size specimen by modularizing members and nodes. The member used in the model is the WPC member with 70% wooden fiber contests, which is higher then previous WPC one. Its members and nodes are modularized by analyzing geometric characteristics of icosahedral-based geodetic dome. Applicapability of the 6ea prototype nodes and 3ea prototype members to the modular dome is examined with the results of the modulaization and the making process for the real-size specimen. Besides, from the analysis results, the lowest buckling mode is expected to be a nodal buckling on a node near the boundary.

A Study on the Characteristics of Nonlinear Unstable Phenomenon According to the Shape Variation of Cable Domes (케이블 돔 구조물의 형태 변화에 따른 비선형 불안정 거동의 특성에 관한 연구)

  • Kim, Seung Deog;Back, In Seong;Kim, Hyung Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.345-353
    • /
    • 2004
  • One of the key issues in spatial structures with large spaces is how to carry the weight of the roof. This can be solved by the effective use of tension members. A cable dome structural system facilitates the construction of a large space structure. As external load increases, however, the cable dome structural system is put at risk due to global buckling. This study measures the shape of the Geiger and Flower-type cable dome by applying an initial stress. This unstable phenomenon is also examined using a perfectly shaped model and an imperfect model, which are both subjected to an axisymmetric load.

An Experimental Study on Welded Joints for Single-Layer Latticed Domes (단층 래티스 돔의 용접 접합부에 관한 실험연구)

  • Seo, Sang-Hoon;Choi, June-Ho;Lee, Young-Hak;Kim, Hee-Cheul;Kim, Min-Sook;Lee, Sung-Min
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.161-164
    • /
    • 2008
  • Demands for space structures such as domes have increased in Korea. Generally, typical methods for connections of the space structures have technical limits in the space distances of the single latticed domes between supports. In this paper, improved welded joints for single-layer lattice domes was suggested and compared with the existing connections of the single layer latticed domes through both analytical and experimental studies.

  • PDF

An Analysis of Stabilizing Process of Cable Dome and Its Application (케이블 돔의 안정화 이행과정해석 및 적용)

  • HwangBo, Seok;Yoo, Yong-Ju;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.69-76
    • /
    • 2006
  • Cable dome is one of tension structure which is gradually stabilized by tensioning tables from initially unstable state to finally stable state. This stabilizing process is not able to be developed by general analysis because some cables endure compression forces during stabilizing process. Thus, this paper uses dynamic relaxation method to solve this problem. To apply this stabilizing process analysis to the actual project, this paper deals with cable dome roof of Seoul Olympic Gymnasium. Finally, this paper prove the usefulness of stabilizing process analysis by comparing the analysis results and the measurements.

  • PDF

The Buckling Characteristics of Single-Layer Lamella Domes according to Support Position under Construction (단층라멜라 돔의 시공 중 서포트 위치에 따른 좌굴특성)

  • Kim, Cheol-Hwan;Suk, Chang-Mok;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 2010
  • Single layer latticed domes which have a mechanics property, a functional property, a aesthetic property and so on, occupies one part of long span space structures and after this, the using parts will be extended. The frame network pattern of single-layer latticed domes can be infinitely taken into account. The typical network patterns are triangular, square, hexagon, lamella and rib etc. It would take long time and cost too much to erect large roof structures with traditional erection techniques due to require of large number of temporary bracing and supports. The erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up election method that utilizes jack-up supports and this will extremely saves time and cost to erect large roof structures. The objective of this study is to analysis the buckling characteristics of single-layer lamella domes according to the support number and position. From the result of this study, we obtained the fundamental data for the structural engineers who design the temporary support of large roof structures.

  • PDF