• 제목/요약/키워드: 독순술

검색결과 3건 처리시간 0.017초

MobileNet을 이용한 한국어 입모양 인식 시스템 (Korean Lip Reading System Using MobileNet)

  • 이원종;김주아;손서원;김동호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.211-213
    • /
    • 2022
  • Lip Reading(독순술(讀脣術)) 이란 입술의 움직임을 보고 상대방이 무슨 말을 하는지 알아내는 기술이다. 본 논문에서는 MBC, SBS 뉴스 클로징 영상에서 쓰이는 문장 10개를 데이터로 사용하고 CNN(Convolutional Neural Network) 아키텍처 중 모바일 기기에서 동작을 목표로 한 MobileNet을 모델로 이용하여 발화자의 입모양을 통해 문장 인식 연구를 진행한 결과를 제시한다. 본 연구는 MobileNet과 LSTM을 활용하여 한국어 입모양을 인식하는데 목적이 있다. 본 연구에서는 뉴스 클로징 영상을 프레임 단위로 잘라 실험 문장 10개를 수집하여 데이터셋(Dataset)을 만들고 발화한 입력 영상으로부터 입술 인식과 검출을 한 후, 전처리 과정을 수행한다. 이후 MobileNet과 LSTM을 이용하여 뉴스 클로징 문장을 발화하는 입모양을 학습 시킨 후 정확도를 알아보는 실험을 진행하였다.

  • PDF

베이지안 분류를 이용한 립 리딩 시스템 (Lip-reading System based on Bayesian Classifier)

  • 김성우;차경애;박세현
    • 한국산업정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.9-16
    • /
    • 2020
  • 음성 정보를 배제하고 영상 정보만을 이용한 발음 인식 시스템은 다양한 맞춤형 서비스에 적용될 수 있다. 본 논문에서는 베이지안 분류기를 기반으로 입술 모양을 인식하여 한글 모음을 구분하는 시스템을 개발한다. 얼굴 이미지의 입술 모양에서 특징 벡터를 추출하고 설계된 기계 학습모델을 적용하여 실험한 결과 'ㅏ' 발음의 경우 94%의 인식률을 보였으며, 평균 인식률은 약 84%를 나타내었다. 또한 비교군으로 실험한 CNN 환경에서의 인식률보다 높은 결과를 보였다. 이를 통해서 입술 영역의 랜드 마크로 설계된 특징 값을 사용하는 베이지안 분류 기법이 적은 수의 훈련 데이터에서 보다 효율적일 수 있음을 알 수 있다. 따라서 모바일 디바이스와 같은 제한적 하드웨어에서 응용 가능한 어플리케이션 개발에 활용할 수 있다.

시각적 어텐션을 활용한 입술과 목소리의 동기화 연구 (Lip and Voice Synchronization Using Visual Attention)

  • 윤동련;조현중
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.166-173
    • /
    • 2024
  • 본 연구에서는 얼굴 동영상에서 입술의 움직임과 음성 간의 동기화 탐지 방법을 제안한다. 기존의 연구에서는 얼굴 탐지 기술로 얼굴 영역의 바운딩 박스를 도출하고, 박스의 하단 절반 영역을 시각 인코더의 입력으로 사용하여 입술-음성 동기화 탐지에 필요한 시각적인 특징을 추출하였다. 본 연구에서는 입술-음성 동기화 탐지 모델이 음성 정보의 발화 영역인 입술에 더 집중할 수 있도록 사전 학습된 시각적 Attention 기반의 인코더 도입을 제안한다. 이를 위해 음성 정보 없이 시각적 정보만으로 발화하는 말을 예측하는 독순술(Lip-Reading)에서 사용된 Visual Transformer Pooling(VTP) 모듈을 인코더로 채택했다. 그리고, 제안 방법이 학습 파라미터 수가 적음에도 불구하고 LRS2 데이터 세트에서 다섯 프레임 기준으로 94.5% 정확도를 보임으로써 최근 모델인 VocaList를 능가하는 것을 실험적으로 증명하였다. 또, 제안 방법은 학습에 사용되지 않은 Acappella 데이터셋에서도 VocaList 모델보다 8% 가량의 성능 향상이 있음을 확인하였다.