• 제목/요약/키워드: 독성등가 값

검색결과 2건 처리시간 0.017초

다이옥신과 건강: 인체 노출 수준 및 건강영향에 대한 역학적 연구 (Dioxins and Health: Human Exposure Level and Epidemiologic Evidences of Health Effects)

  • 장재연;권호장
    • Journal of Preventive Medicine and Public Health
    • /
    • 제36권4호
    • /
    • pp.303-313
    • /
    • 2003
  • 다이옥신은 단일 화학물질이 아니라 비슷한 화학적 구조와 독성작용을 갖는 화학물질들의 그룹이다. 다이옥신 중에 가장 많은 연구가 이루어졌고 독성도 강한 물질이 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)인데, 다이옥신 혼합체의 독성을 평가할 때는 각 물질 별로 TCDD에 대한 상대독성을 고려하여 독성등가계수(TEQ)라는 지표를 만들어 사용한다. 일반인들의 평균적인 혈중 다이옥신에 대한 기준값은 명확하게 제시되지는 않고 있으나 관련 연구들을 종합할 때 대략 10-20 ppt $I-TEQ_{DF}$ 범위를 일반인의 평균적인 수준으로 볼 수 있다. 오염 가능지역의 주민들의 혈중 다이옥신 값은 지역에 따라 차이가 있으나 대부분 20ppt $I-TEQ_{DF}$ 이상의 값을 나타내고 있으며 특히 오염이 심한 지역의 주민들의 경우에는 직업적인 노출이 없는 일반 주민들임에도 불구하고 혈중 다이옥신 농도가 약 50 ppt $I-TEQ_{DF}$까지 상승할 수 있다. 다이옥신의 건강영향에 관해서는 수많은 역학적 연구들이 수행되었지만 혈액내에서 TCDD를 직접 측정하여 인체 노출을 비교적 정확하게 평가한 사업장 코호트나 세베소 지역 주민 코호트에서 나온 결과들이 보다 많은 신뢰를 받고 있다. 다이옥신 노출에 따른 건강영향은 크게 암발생과 암을 제외한 건강영향으로 구분할 수 있다. 국제암연구기구(IARC)나 미국 환경보호청(EPA) 모두 TCDD를 인체 발암물질로 분류하고 있으나 역학적 증거들이 충분한 상태는 아니다. TCDD를 제외한 나머지 다이옥신에 대해서는 IARC에서 발암성의 증거가 불충분한 물질(Group 3)로 분류하고 있다. 대부분의 장기에서 다이옥신의 건강영향에 대한 조사가 이루어져 왔다. 현재까지 비교적 다이옥신 노출과 관련성이 높은 것으로 평가되고 있는 것은 염소성여드름, 간 효소의 하나인 GGT의 상승, 그리고 생식호르몬의 변화 등이다. 그밖에 지질농도, 당뇨, 면역학적 영향, 심혈관계에 대한 영향, 갑상선기능, 신경계에 대한 영향, 소아 발달에 대한 영향 등에 대해서는 역학 연구들이 일관된 결과를 보여주지 못하고 있기 때문에 계속적인 연구를 필요로 하고 있다. 다이옥신의 독성은 수많은 동물실험을 통해 증명이 되었으나 인간을 대상으로 한 역학적 연구는 아직 기대만큼 명료한 결과들을 제시해주지 못하고 있다. 그러나 IARC나 EPA모두 인체발암물질로 분류하였고 다양한 건강영향에 대한 증거들이 있는 것은 분명한 만큼 다이옥신 노출을 최소화하려는 노력을 게을리 해서는 안 될 것이다.

다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델 (Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship)

  • 김지훈;장윤석
    • 대한환경공학회지
    • /
    • 제31권2호
    • /
    • pp.125-131
    • /
    • 2009
  • 영가철과 혐기성 미생물을 이용한 환원적 탈염화반응을 통한 다이옥신 처리 능력을 평가하기 위해, 자유에너지 선형관계(linear free energy relationship)를 이용하여 다이옥신의 탈염화에 의한 농도 및 독성변화 예측 모델을 최초로 정립하였다. 수용액상에 존재하는 다이옥신류의 깁스자유에너지는 기존 문헌의 열역학적 계산결과를 범밀도함수이론(density functional theory)을 이용한 계산 수준으로 보정하였으며, 보정된 깁스자유에너지와 실험을 통해 얻은 탈염화 반응속도 상수와의 선형관계를 통해 다이옥신의 탈염화 반응 256개에 대한 반응속도상수를 예측하였다. 본 모델을 통해 탈염화에 의해 변화하는 다이옥신 류 76종에 대한 시간 별 농도를 계산할 수 있다. 8염화다이옥신(Octachlorinated dibenzo-p-dioxin, OCDD)이 완전히탈염화되어 dibenzo-p-dioxin (DD)로 탈염화되기까지는 100년 이상의 반응시간이 필요하였으며, 독성등가값(toxic equivalent quantity, TEQ)의 경우 탈염화가 진행되면서 초기농도의 10배 이상까지 증가하는 것으로 밝혀졌다. 이를 통해, 다이옥신의 처리를 위해서는 좀 더 빠른 탈염화 반응속도를 갖는 다른 전자공여 시스템을 사용하거나, 환원적 탈염화-라디칼 산화와 같은 복합 연계처리가 필요함을 알 수 있다. 본 논문을 통해 제시된 예측 기법은 다이옥신뿐 아니라 다른 할로겐화 화합물의 탈염화 예측과 여러 전자공여 시스템에 대한 평가에 적용이 가능하다.